The vacation model studied is an M/G/1 queueing system in which the server attends iteratively to ‘secondary' or ‘vacation' tasks at ‘primary' service completion epochs, when the primary queue is exhausted. The time-dependent and steady-state distributions of the backlog process [6] are obtained via their Laplace transforms. With this as a stepping stone, the ergodic distribution of the depletion time [5] is obtained. Two decomposition theorems that are somewhat different in character from those available in the literature [2] are demonstrated. State space methods and simple renewal-theoretic tools are employed.