Let E be an Archimedean Riesz space and let Orth∞(E) be the f-algebra consisting of all extended orthomorphisms on E, that is, of all order bounded linear operators T:D→E, with D an order dense ideal in E, such that T(B∩D) ⊆ B for every band B in E. We give conditions on E and on a Riesz subspace F of E insuring that every T ∈ Orth∞(F) can be extended to some ∈ Orth∞(E), and we also consider the problem of inversing an extended orthomorphism on its support. The same problems are also studied in the case of σ-orthomorphisms, that is, extended orthomorphisms with a super order dense domain. Furthermore, some applications are given.