Granite is the final product of the high-temperature, magmatic, predominantly endogenic, chemical differentiation of the earth. Our understanding of the origin and evolution of granitoid rocks comes from a combination of direct observation, analogue experimentation and numerical modelling. A brief historical overview shows an exceptional level of such research activity over the last 50 years. The number and complexity of questions have resulted in both an absolute and a relative growth of the science since the plate tectonic revolution, largely consisting of refining the current magmatic paradigm within its overarching context. Current research activity involves large components of mineralogical–petrological–geochemical and structural–tectonic work, with much lower levels of experimental, geophysical and geochronological investigations. Many important questions concerning the thermal, physical and chemical aspects of the origin and evolution of granites remain. In keeping with the general progress of science, the complexity of the questions, the declining financial support and the revolution in information technology, directions of granite research in the foreseeable future will change from concrete and qualitative to abstract and quantitative, from expensive and active to cheap and armchair, from reductionist to holistic, and from periodic communication to continuous communication.