A rapid, visually read, dot-ELISA developed for the detection and differentiation of trypanosome species in tsetse flies (Glossina spp.), was field tested alongside the standard fly dissection method on a ranch in south eastern Kenya. Of 104 G. pallidipes dissected, 2 were found to be infected with trypanosomes in their midguts. By the dissection method the infecting trypanosome species could not be identified, as both flies had no salivary gland infections. However, using the dot-ELISA, the 2 flies were shown to be infected with Trypanosoma congolense in their midguts. The midguts of an additional 6 (5·8%) of the 104 G. pallidipes tested positive for T. congolense in the dot-ELISA, even though no trypanosomes were seen on dissection. The infection rate for this fly species as determined using the dot-ELISA, therefore, was 7·7% for T. congolense in midgut infections compared to 1·9% identified by fly dissection. The salivary glands and mouthparts of the 6 additional tsetse flies identified by dot-ELISA were all negative as determined by the 2 techniques. None of 390 G. longipennis flies dissected and examined for trypanosomes in the midgut, salivary glands and mouthparts was shown, by this method, to be infected. Using the dot-ELISA, however, 17 (4·4%) of the flies tested positive for T. congolense in the midgut, whilst the salivary glands and mouthparts of the same flies were negative. Thus, the dot-ELISA appears to be more sensitive than the fly dissection method under field conditions. Moreover, the dot-ELISA can be performed in the field without electricity. It is simple to perform, and was not affected by high ambient temperatures (22–32°C), or by contamination of reactants with dust.