We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Tracheal intubation is a high-risk intervention for exposure to airborne infective pathogens, including the novel coronavirus disease 2019 (COVID-19). During the recent pandemic, personal protective equipment (PPE) was essential to protect staff during intubation but is recognized to make the practical conduct of anesthesia and intubation more difficult. In the early phase of the coronavirus pandemic, some simple alterations were made to the emergency anesthesia standard operating procedure (SOP) of a prehospital critical care service to attempt to maintain high intubation success rates despite the challenges posed by wearing PPE. This retrospective observational cohort study aims to compare first-pass intubation success rates before and after the introduction of PPE and an altered SOP.
Methodology:
A retrospective observational cohort study was conducted from January 1, 2019 through August 30, 2021. The retrospective analysis used prospectively collected data using prehospital electronic patient records. Anonymized data were held in Excel (v16.54) and analyzed using IBM SPSS Statistics (v28). Patient inclusion criteria were those of all ages who received a primary tracheal intubation attempt outside the hospital by critical care teams. March 27, 2020 was the date from which the SOP changed to mandatory COVID-19 SOP including Level 3 PPE – this date is used to separate the cohort groups.
Results:
Data were analyzed from 1,266 patients who received primary intubations by the service. The overall first-pass intubation success rate was 89.7% and the overall intubation success rate was 99.9%. There was no statistically significant difference in first-pass success rate between the two groups: 90.3% in the pre-COVID-19 group (n = 546) and 89.3% in the COVID-19 group (n = 720); Pearson chi-square 0.329; P = .566. In addition, there was no statistical difference in overall intubation success rate between groups: 99.8% in the pre-COVID-19 group and 100.0% in the COVID-19 group; Pearson chi-square 1.32; P = .251.
Non-drug-assisted intubations were more than twice as likely to require multiple attempts in both the pre-COVID-19 group (n = 546; OR = 2.15; 95% CI, 1.19-3.90; P = .01) and in the COVID-19 group (n = 720; OR = 2.5; 95% CI, 1.5-4.1; P = <.001).
Conclusion:
This study presents simple changes to a prehospital intubation SOP in response to COVID-19 which included mandatory use of PPE, the first intubator always being the most experienced clinician, and routine first use of video laryngoscopy (VL). These changes allowed protection of the clinical team while successfully maintaining the first-pass and overall success rates for prehospital tracheal intubation.
United Kingdom Health Security Agency (UKHSA) guidance related to mask use for health care workers in a non-aerosol generating procedure (AGP) setting has remained as Level 2 water repellent paper mask (surgical mask) only. Energetic respiratory events, such as coughing, can generate vast numbers of droplets and aerosols. Coughing, considered to be a non-AGP event, frequently occurs in the relatively small, confined space of an ambulance (∼25 m3). The report seeks to explore whether existing research can provide an indication of the risk to ambulance staff, via aerosol transmission, of an acute respiratory infection (ARI) during a coughing event within the clinical setting of an ambulance.
Methods:
International bibliographic databases were searched (CINAHL Plus, SCOPUS, PubMed, and CENTRAL) using appropriate search strings and a combination of relevant medical subject headings with appropriate truncation. Methodological filters were not applied. Papers without an English language abstract were excluded from the review. Grey literature was sought by searching specialist databases OpenGrey and GreyNet, as well as key organizations’ websites. The initial search identified 2,405 articles. Following screening, along with forward and backward citation of key papers identified within the literature search, 36 papers were deemed eligible for the scoping review.
Discussion:
Attempts to replicate a clinical environment to investigate the risk of transmission of airborne viruses to health care workers during a coughing event provided evidence for the generation of respirable aerosol particles and thus potential transmission of pathogens. In cases of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), potential to infect versus true airborne transmission is a debate that continues, but there is general consensus that a large variation of cough characteristics and aerosol generation amongst individuals exists. Studies widely endorsed face masks as a source control device, but there were conflicting views about the impact of mask leakage.
Conclusion:
Further research is required to provide clarity of the risk to health care workers when caring for a coughing patient in the confined clinical ambulance setting and to provide an evidence base to assist in the determination of appropriate respiratory protective equipment (RPE).
Coronavirus disease 2019 has highlighted the lack of knowledge on aerosol exposure during respiratory activity and aerosol-generating procedures. This study sought to determine the aerosol concentrations generated by coughing to better understand, and to set a standard for studying, aerosols generated in medical procedures.
Methods
Aerosol exposure during coughing was measured in 37 healthy volunteers in the operating theatre with an optical particle sizer, from 40 cm, 70 cm and 100 cm distances.
Results
Altogether, 306 volitional and 15 involuntary coughs were measured. No differences between groups were observed.
Conclusion
Many medical procedures are expected to generate aerosols; it is unclear whether they are higher risk than normal respiratory activity. The measured aerosol exposure can be used to determine the risk for significant aerosol generation during medical procedures. Considerable variation of aerosol generation during cough was observed between individuals, but whether cough was volitional or involuntary made no difference to aerosol production.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.