This paper presents a dynamic model of a planar parallel manipulator including structural flexibility of several linkages. The equations of motion are formulated using the Lagrangian equations of the first type and Lagrangian multipliers are introduced to represent the geometry of multiple closed loop chains. Then, an active damping approach using a PZT actuator is described to attenuate structural vibration of the linkages. Overall dynamic behavior of the manipulator, induced from structural flexibility of the linkage, is well illustrated through simulations. This analysis will be used to develop a prototype parallel manipulator.