The question whether a convex closed curve can be approximated by ellipses having a large number of foci is considered. It is shown that the limiting, convex figure of multifocal ellipses may have only one single straight segment. This happens only in the case, when the foci tend partly to infinity and partly to points of the line through the straight segment. The approximations of certain ‘distance integrals' are treated; the characterization of approximability remains an open problem.