We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper is concerned with numerical approximations of a nonlocal heat equation define on an infinite domain. Two classes of artificial boundary conditions (ABCs) are designed, namely, nonlocal analog Dirichlet-to-Neumann-type ABCs (global in time) and high-order Padé approximate ABCs (local in time). These ABCs reformulate the original problem into an initial-boundary-value (IBV) problem on a bounded domain. For the global ABCs, we adopt a fast evolution to enhance computational efficiency and reduce memory storage. High order fully discrete schemes, both second-order in time and space, are given to discretize two reduced problems. Extensive numerical experiments are carried out to show the accuracy and efficiency of the proposed methods.
This paper develops the theory of multisymplectic variational integrators for nonsmooth continuum mechanics with constraints. Typical problems are the impact of an elastic body on a rigid plate or the collision of two elastic bodies. The integrators are obtained by combining, at the continuous and discrete levels, the variational multisymplectic formulation of nonsmooth continuum mechanics with the generalized Lagrange multiplier approach for optimization problems with nonsmooth constraints. These integrators verify a spacetime multisymplectic formula that generalizes the symplectic property of time integrators. In addition, they preserve the energy during the impact. In the presence of symmetry, a discrete version of the Noether theorem is verified. All these properties are inherited from the variational character of the integrator. Numerical illustrations are presented.
We present a simple yet effective and applicable scheme, based on quadrature, for constructing optimal iterative methods. According to the, still unproved, Kung-Traub conjecture an optimal iterative method based on n + 1 evaluations could achieve a maximum convergence order of 2n. Through quadrature, we develop optimal iterative methods of orders four and eight. The scheme can further be applied to develop iterative methods of even higher orders. Computational results demonstrate that the developed methods are efficient as compared with many well known methods.
We consider stochastic approximation algorithms on a general Hilbert space, and study four conditions on noise sequences for their analysis: Kushner and Clark's condition, Chen's condition, a decomposition condition, and Kulkarni and Horn's condition. We discuss various properties of these conditions. In our main result we show that the four conditions are all equivalent, and are both necessary and sufficient for convergence of stochastic approximation algorithms under appropriate assumptions.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.