If G is any group then g ∊ G is called an involution if g ≠ 1 and g o g = 1. A group G is called bireflectional if every element in G is a product of two involutions. It is known that 2- dimensional, 3- dimensional, and some types of n-dimensional (n > 3) absolute geometries (in the sense of H. Kinder) are bireflectional. In this article the author proves the general result that every n-dimensional absolute geometry is bireflectional.