We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We propose a geometric framework to describe and analyse a wide array of operator splitting methods for solving monotone inclusion problems. The initial inclusion problem, which typically involves several operators combined through monotonicity-preserving operations, is seldom solvable in its original form. We embed it in an auxiliary space, where it is associated with a surrogate monotone inclusion problem with a more tractable structure and which allows for easy recovery of solutions to the initial problem. The surrogate problem is solved by successive projections onto half-spaces containing its solution set. The outer approximation half-spaces are constructed by using the individual operators present in the model separately. This geometric framework is shown to encompass traditional methods as well as state-of-the-art asynchronous block-iterative algorithms, and its flexible structure provides a pattern to design new ones.
For $p\geq 2$, let $E$ be a 2-uniformly smooth and $p$-uniformly convex real Banach space and let $A:E\rightarrow E^{\ast }$ be a Lipschitz and strongly monotone mapping such that $A^{-1}(0)\neq \emptyset$. For given $x_{1}\in E$, let $\{x_{n}\}$ be generated by the algorithm $x_{n+1}=J^{-1}(Jx_{n}-\unicode[STIX]{x1D706}Ax_{n})$, $n\geq 1$, where $J$ is the normalized duality mapping from $E$ into $E^{\ast }$ and $\unicode[STIX]{x1D706}$ is a positive real number in $(0,1)$ satisfying suitable conditions. Then it is proved that $\{x_{n}\}$ converges strongly to the unique point $x^{\ast }\in A^{-1}(0)$. Furthermore, our theorems provide an affirmative answer to the Chidume et al. open problem [‘Krasnoselskii-type algorithm for zeros of strongly monotone Lipschitz maps in classical Banach spaces’, SpringerPlus4 (2015), 297]. Finally, applications to convex minimization problems are given.
As a continuation of previous work of the first author with Ranjbar [‘A variational inequality in complete CAT(0) spaces’, J. Fixed Point Theory Appl.17 (2015), 557–574] on a special form of variational inequalities in Hadamard spaces, in this paper we study equilibrium problems in Hadamard spaces, which extend variational inequalities and many other problems in nonlinear analysis. In this paper, first we study the existence of solutions of equilibrium problems associated with pseudo-monotone bifunctions with suitable conditions on the bifunctions in Hadamard spaces. Then, to approximate an equilibrium point, we consider the proximal point algorithm for pseudo-monotone bifunctions. We prove existence of the sequence generated by the algorithm in several cases in Hadamard spaces. Next, we introduce the resolvent of a bifunction in Hadamard spaces. We prove convergence of the resolvent to an equilibrium point. We also prove $\triangle$-convergence of the sequence generated by the proximal point algorithm to an equilibrium point of the pseudo-monotone bifunction and also the strong convergence under additional assumptions on the bifunction. Finally, we study a regularization of Halpern type and prove the strong convergence of the generated sequence to an equilibrium point without any additional assumption on the pseudo-monotone bifunction. Some examples in fixed point theory and convex minimization are also presented.
Let E be a uniformly convex and uniformly smooth real Banach space, and let E* be its dual. Let A : E → 2E* be a bounded maximal monotone map. Assume that A−1(0) ≠ Ø. A new iterative sequence is constructed which converges strongly to an element of A−1(0). The theorem proved complements results obtained on strong convergence of the proximal point algorithm for approximating an element of A−1(0) (assuming existence) and also resolves an important open question. Furthermore, this result is applied to convex optimization problems and to variational inequality problems. These results are achieved by combining a theorem of Reich on the strong convergence of the resolvent of maximal monotone mappings in a uniformly smooth real Banach space and new geometric properties of uniformly convex and uniformly smooth real Banach spaces introduced by Alber, with a technique of proof which is also of independent interest.
A Chebyshev set is a subset of a normed linear space that admits unique best approximations. In the first part of this paper we present some basic results concerning Chebyshev sets. In particular, we investigate properties of the metric projection map, sufficient conditions for a subset of a normed linear space to be a Chebyshev set, and sufficient conditions for a Chebyshev set to be convex. In the second half of the paper we present a construction of a nonconvex Chebyshev subset of an inner product space.
In this paper, we prove that if $X$ is an infinite-dimensional real Hilbert space and $J: X\rightarrow \mathbb{R} $ is a sequentially weakly lower semicontinuous ${C}^{1} $ functional whose Gâteaux derivative is non-expansive, then there exists a closed ball $B$ in $X$ such that $(\mathrm{id} + {J}^{\prime } )(B)$ intersects every convex and dense subset of $X$.
In this note we give examples of convex functions whose subdifferentials have unpleasant properties. Particularly, we exhibit a proper lower semicontinuous convex function on a separable Hilbert space such that the graph of its subdifferential is not closed in the product of the norm and bounded weak topologies. We also exhibit a set whose sequential normal cone is not norm closed.
In this paper we continue our study of the solvability of nonlinear equations involving uniform limits of A-proper and pseudo A-proper maps under a new growth condition (1) that we began in [14,15]. Applications of our results to quasimonotone, ball-condensing pertubations of c -accretive maps and maps of semibounded variation and of type (M) are also given.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.