We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $G$ be a compact Abelian group and $E$ a subset of the group $\widehat {G}$ of continuous characters of $G$. We study Arens regularity-related properties of the ideals $L_E^1(G)$ of $L^1(G)$ that are made of functions whose Fourier transform is supported on $E\subseteq \widehat {G}$. Arens regularity of $L_E^1(G)$, the centre of $L_E^1(G)^{\ast \ast }$ and the size of $L_E^1(G)^\ast /\mathcal {WAP}(L_E^1(G))$ are studied. We establish general conditions for the regularity of $L_E^1(G)$ and deduce from them that $L_E^1(G)$ is not strongly Arens irregular if $E$ is a small-2 set (i.e. $\mu \ast \mu \in L^1(G)$ for every $\mu \in M_E^1(G)$), which is not a $\Lambda (1)$-set, and it is extremely non-Arens regular if $E$ is not a small-2 set. We deduce also that $L_E^1(G)$ is not Arens regular when $\widehat {G}\setminus E$ is a Lust-Piquard set.
We present a unified theory for the almost periodicity of functions with values in an arbitrary Banach space, measures and distributions via almost periodic elements for the action of a locally compact abelian group on a uniform topological space. We discuss the relation between Bohr- and Bochner-type almost periodicity, and similar conditions, and how the equivalence among such conditions relates to properties of the group action and the uniformity. We complete the paper by demonstrating how various examples considered earlier all fit in our framework.
In this paper, we prove that given a cut-and-project scheme $(G, H, \mathcal {L})$ and a compact window $W \subseteq H$, the natural projection gives a bijection between the Fourier transformable measures on $G \times H$ supported inside the strip ${\mathcal L} \cap (G \times W)$ and the Fourier transformable measures on G supported inside ${\LARGE \curlywedge }(W)$. We provide a closed formula relating the Fourier transform of the original measure and the Fourier transform of the projection. We show that this formula can be used to re-derive some known results about Fourier analysis of measures with weak Meyer set support.
Let H be an ultraspherical hypergroup and let $A(H)$ be the Fourier algebra associated with $H.$ In this paper, we study the dual and the double dual of $A(H).$ We prove among other things that the subspace of all uniformly continuous functionals on $A(H)$ forms a $C^*$-algebra. We also prove that the double dual $A(H)^{\ast \ast }$ is neither commutative nor semisimple with respect to the Arens product, unless the underlying hypergroup H is finite. Finally, we study the unit elements of $A(H)^{\ast \ast }.$
In this paper, we initiate the study of fixed point properties of amenable or reversible semitopological semigroups in modular spaces. Takahashi’s fixed point theorem for amenable semigroups of nonexpansive mappings, and T. Mitchell’s fixed point theorem for reversible semigroups of nonexpansive mappings in Banach spaces are extended to the setting of modular spaces. Among other things, we also generalize another classical result due to Mitchell characterizing the left amenability property of the space of left uniformly continuous functions on semitopological semigroups by introducing the notion of a semi-modular space as a generalization of the concept of a locally convex space.
In this paper we characterize the Fourier transformability of strongly almost periodic measures in terms of an integrability condition for their Fourier–Bohr series. We also provide a necessary and sufficient condition for a strongly almost periodic measure to be the Fourier transform of a measure. We discuss the Fourier transformability of a measure on $\mathbb{R}^{d}$ in terms of its Fourier transform as a tempered distribution. We conclude by looking at a large class of such measures coming from the cut and project formalism.
A locally compact group G is compact if and only if its convolution algebras contain non-zero (weakly) completely continuous elements. Dually, G is discrete if its function algebras contain non-zero completely continuous elements. We prove non-commutative versions of these results in the case of locally compact quantum groups.
We develop a theory of ergodicity for unbounded functions ø: J → X, where J is a subsemigroup of a locally compact abelian group G and X is a Banach space. It is assumed that ø is continuous and dominated by a weight w defined on G. In particular, we establish total ergodicity for the orbits of an (unbounded) strongly continuous representation T: G → L(X) whose dual representation has no unitary point spectrum. Under additional conditions stability of the orbits follows. To study spectra of functions, we use Beurling algebras L1w(G) and obtain new characterizations of their maximal primary ideals, when w is non-quasianalytic, and of their minimal primary ideals, when w has polynomial growth. It follows that, relative to certain translation invariant function classes , the reduced Beurling spectrum of ø is empty if and only if ø ∈ . For the zero class, this is Wiener's tauberian theorem.
Let X be a Banach space and . Let Π and Π0 be two subspaces of , the Banach space of bounded continuous functions from 𝕁 to X. We seek conditions under which Π + Π0 is closed in . This led to introduce a general space, which contains many classes of almost periodic type functions as subspaces. We prove some recent results on indefinite integral for the elements of these classes. We apply certain results on harmonic analysis to investigate solutions of differential equations. As an application we study specific spaces: the spaces of asymptotic and pseudo almost automorphic functions and their solutions of some ordinary quasi-linear and a non-linear parabolic partial differential equations.
A classical result of I. Glicksberg and K. de Leeuw asserts that the almost periodic compactification of a direct product S × T of abelian semigroups with identity is (canonically isomorphic to) the direct product of the almost periodic compactiflcations of S and T. Some efforts have been made to generalize this result and recently H. D. Junghenn and B. T. Lerner have proved a theorem giving necessary and sufficient conditions for an F-compactification of a semidirect product S⊗σT to be a semidirect product of compactiflcations of S and T. A different such theorem is presented here along with a number of corollaries and examples which illustrate its scope and limitations. Some behaviour that can occur for semidirect products, but not for direct products, is exposed
The question as to the existence of nontrivial compact or weakly compact multipliers between spaces of functions on groups has been investigated for several years. Until now, however, no general method which is applicable to a large class of function spaces seems to be known
In this paper we prove that the existence of nontrivial compact multipliers between Banach function spaces on which a group acts is related to the existence of nonzero almost periodic functions.
Let B be a bounded linear operator having domain and range in a Banach space. If the second-order differential operator d2/dt2–B has a Bohr-Neugebauer type property for Bochner almost periodic functions, then any Stepanov-bounded solution of the differential equation (d2/dt2)u(t) – Bu(t) = g(t) is Bochner almost periodic, with g(t) being a Stepanov-almost periodic continuous function.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.