Published online by Cambridge University Press: 29 January 2019
In this paper we characterize the Fourier transformability of strongly almost periodic measures in terms of an integrability condition for their Fourier–Bohr series. We also provide a necessary and sufficient condition for a strongly almost periodic measure to be the Fourier transform of a measure. We discuss the Fourier transformability of a measure on $\mathbb{R}^{d}$ in terms of its Fourier transform as a tempered distribution. We conclude by looking at a large class of such measures coming from the cut and project formalism.