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ON SECOND-ORDER DIFFERENTIAL OPERATORS 
WITH BOHR-NEUGEBAUER TYPE PROPERTY 

BY 

ARIBINDI SATYANARAYAN RAO 

ABSTRACT. Let B be a bounded linear operator having domain 
and range in a Banach space. If the second-order differential opera­
tor d2ldt2—B has a Bohr-Neugebauer type property for Bochner 
almost periodic functions, then any Stepanov-bounded solution 
of the differential equation (d2ldt2)u(t)—Bu(t)=g(t) is Bochner 
almost periodic, with g{t) being a Stepanov-almost periodic con­
tinuous function. 

1. Suppose X is a Banach space and / is the interval — oo<f<oo. A function 
feL*oe(J;X) with l<p<oo is said to be Stepanov-bounded or ^-bounded on 
J if 

1/(5)1» <faj <*0 

(for the definitions of (Bochner or strong) almost periodicity and S^-almost peri­
odicity, see pp. 3 and 77, Amerio-Prouse [1]). 

Suppose that J? is a bounded linear operator having domain and range in X. 
We say that the second-order differential operator d2jdt2—B has Bohr-Neugebauer 
property if, for any almost periodic Z-valued function /(f), any bounded (on J) 
solution of the equation 

(1.2) ^u(t)-Bu(f)=f(t) on J 

is almost periodic. 
The object of this paper is to establish the following result. 

THEOREM. For a bounded linear operator B with domain D(B) and range R(B) 
in a Banach space X, let the differential operator d2jdt2—B be such that, for any 
almost periodic X-valued function/(f), any Sv-bounded solution u:J-+D(B) of the 
equation (1.2) is SP-almost periodic. Ifp>\, then, for any Sx-almost periodic con­
tinuous X-valued function g{t), any Sv-bounded solution u\J-+D{B) of the equation 

(1.3) £2u(t)-Bu(t) = g(t) on J 

is almost periodic. 
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2. We shall require the following result. 

LEMMA (A). If a differentiable function h:J->X is S^almost periodic, and if h' 
is uniformly continuous on J, then h and h' are both almost periodic from J to X. 

Proof. See Remark (iii) of Rao-Hengartner [5]. 

3. Proof of Theorem. By (1.3), we have the representation 

(3.1) u'(t) = ti'(0)+ [ Bu(s) ds+ f g(s) ds on J. 
Jo Jo 

From this representation, we can show that u'(t) is uniformly continuous on / 
(see Rao [4]). 

Now consider a sequence {/>„(*)} °°Œ of non-negative continuous functions on / 
such that 

(3.2) pn(0 = 0 for \t\>.n-\\n
 Pn(t) dt = 1. 
J—n 

The convolution between u and pn is defined by 

(3.3) (u * pn)(t) = J u(ts)pn(s) ds = \ u(s)pn(t-s) ds. 

From (1.3), it follows that 

d2 

(3.4) —2(u*pn)(t)-B(u*pn)(t) = (g*Pn)(t) on J. 

As shown in Rao [4], (« * pn)(t) is bounded on /for all n>\ and (g * pn)(t) is 
almost periodic from JtoX for all n> 1. 

Therefore it follows from our assumption on the operator d2/dt2—B that 
(u * pn)(t) is 5x-almost periodic from J to X for all n>l. The only use made of 
this assumption in this paper is to guarantee that (w * />n)(0 & almost periodic in 
the Stepanov sense. 

Further, by the uniform continuity of u'(i) on / , we can show that (w' * pn)(t) 
is uniformly continuous on / . 

Now we have 

(3.5) (ii * pj(t) = (a' * Pn)(t) on J. 

Hence (u * pn)'(t) is uniformly continuous on / . Thus, by Lemma (A), (u * pn)(t) 
and («' * pn)(t) are both almost periodic from/to Xfor all w>l. 

Again by the uniform continuity of u'{t) on / , the sequence of convolutions 
(u' * pn)(t) converges to u'(t) as «->oo, uniformly on / . So u\t) is almost periodic 
from / to X, and hence is bounded on / . Therefore u(t) is uniformly continuous on 
/ . Consequently, (u * pn)(t)->u(t) as «->oo, uniformly on / . So u{i) is almost peri­
odic from / to X, which completes the proof of the theorem. 
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4. Notes, (i) For p=l, our Theorem remains valid for any ^-bounded uni­
formly continuous solution of the equation (1.3). 

(ii) Suppose Zis a separable Hilbert space, and consider the second-order opera­
tor differential equation 

d2 

— u(t)-Bu(t) = f(t) on J, where f: J-+X is 
at 

an almost periodic function and B is a completely continuous linear operator in 
X commuting with its adjoint (see p. 258, Bochner-Neumann [2]). Then, by 
Theorem 1 of Cooke [3], the operator d2\dt2—B has Bohr-Neugebauer property. 
Now suppose that u(t) is an ^-bounded solution (l< Jp<oo) of the above dif­
ferential equation. 

If we replace g by / i n the proof of our Theorem, then, by the Bohr-Neugebauer 
property of the operator d2jdt2—B, it follows that u(t) is almost periodic from / 
to X. Thus, in this case, the operator d2\dt2—B satisfies the assumption of our 
Theorem for/?>l. 

(iii) Now suppose X is a Hilbert space and B is a bounded linear operator in 
X with J9>0. Then the operator d2\dt2—B has Bohr-Neugebauer property (see 
Zaidman [6]). Consequently, the operator d2jdt2—B satisfies the hypothesis of 
our Theorem for p> 1. 

(iv) Finally, suppose Z i s a reflexive Banach space and B=0. Given an almost 
periodic Z-valued function/(0, suppose u(t) is a bounded solution of the differen­
tial equation 

(4.i) 5 w ( o = / ( ° o n j' 
Then we have the representation 

(4.2) u\t) = M' (0 )+ \f{s) ds on J. 
Jo 

By Lemma 2 of Cooke [3], it follows from (4.1) that u\t) is bounded on / . Conse­
quently, by (4.2), u'(t) is almost periodic from J to X (see Amerio-Prouse [1], 
p. 55 and Authors' Remark on p. 82). Therefore u(t) is also almost periodic from / 
to X. Hence the operator d2\dt2 has Bohr-Neugebauer property. 

Now, given an S^-almost periodic continuous Z-valued function g(t), suppose 
u(t) is an S^-bounded solution ( 1 < / ? < O O ) of the differential equation 

(4.3) ^ W ( 0 = g(0 on J. 

From (4.3), it follows that 

(4.4) £2(u*Pn)(t) = (g*Pn)(t) on J, 

where {/>n(0}°°_ is the sequence defined in the proof of our Theorem. 
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Then (u * />n)(0 is bounded on / and (g * pn)(t) is almost periodic from / to 
X. As shown above, (u * pn)(t) and (w * pn)'(t)=(u' * /0(f) are both almost peri­
odic from / to X. 

By (4.3), it follows from Theorem 8, p. 79, Amerio-Prouse [1] that u'(t) is 
uniformly continuous on / . So (u' * pn)(t)->u'(t) as n->oo, uniformly on / . Hence 
u'(t) is almost periodic from J to X. Therefore u(t) is uniformly continuous on / , 
and hence (u * pn)(t)^u(t) as «->oo, uniformly on J. Consequently, w(f) is almost 
periodic from J to X. So the operator d2/<A2 satisfies the assumption of our Theorem 
for 1</?<OO. 

The author wishes to thank Professor S. Zaidman for the financial support from 
his N.R.C. grant during the preparation of this paper. 
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