ON SECOND-ORDER DIFFERENTIAL OPERATORS WITH BOHR-NEUGEBAUER TYPE PROPERTY

^{BY} ARIBINDI SATYANARAYAN RAO

ABSTRACT. Let B be a bounded linear operator having domain and range in a Banach space. If the second-order differential operator $d^2/dt^2 - B$ has a Bohr-Neugebauer type property for Bochner almost periodic functions, then any Stepanov-bounded solution of the differential equation $(d^2/dt^2)u(t) - Bu(t) = g(t)$ is Bochner almost periodic, with g(t) being a Stepanov-almost periodic continuous function.

1. Suppose X is a Banach space and J is the interval $-\infty < t < \infty$. A function $f \in L^p_{loc}(J; X)$ with $1 \le p < \infty$ is said to be Stepanov-bounded or S^p -bounded on J if

(1.1)
$$||f||_{S^p} = \sup_{t \in J} \left[\int_t^{t+1} ||f(s)||^p \, ds \right]^{1/p} < \infty$$

(for the definitions of (Bochner or strong) almost periodicity and S^p -almost periodicity, see pp. 3 and 77, Amerio-Prouse [1]).

Suppose that B is a bounded linear operator having domain and range in X. We say that the second-order differential operator $d^2/dt^2 - B$ has Bohr-Neugebauer property if, for any almost periodic X-valued function f(t), any bounded (on J) solution of the equation

(1.2)
$$\frac{d^2}{dt^2}u(t) - Bu(t) = f(t) \quad \text{on} \quad J$$

is almost periodic.

The object of this paper is to establish the following result.

THEOREM. For a bounded linear operator B with domain D(B) and range R(B) in a Banach space X, let the differential operator d^2/dt^2-B be such that, for any almost periodic X-valued function f(t), any S^p -bounded solution $u:J\to D(B)$ of the equation (1.2) is S^1 -almost periodic. If p>1, then, for any S^1 -almost periodic continuous X-valued function g(t), any S^p -bounded solution $u:J\to D(B)$ of the equation

(1.3)
$$\frac{d^2}{dt^2}u(t) - Bu(t) = g(t) \quad \text{on} \quad J$$

is almost periodic.

Received by the editors July 3, 1974 and, in revised form, August 28, 1974. AMS subject classification scheme (1970).

Primary: 34C25, 34G05; Secondary: 43A60.

2. We shall require the following result.

LEMMA (A). If a differentiable function $h:J\to X$ is S^1 -almost periodic, and if h' is uniformly continuous on J, then h and h' are both almost periodic from J to X.

Proof. See Remark (iii) of Rao-Hengartner [5].

3. **Proof of Theorem.** By (1.3), we have the representation

(3.1)
$$u'(t) = u'(0) + \int_0^t Bu(s) \, ds + \int_0^t g(s) \, ds \quad \text{on} \quad J.$$

From this representation, we can show that u'(t) is uniformly continuous on J (see Rao [4]).

Now consider a sequence $\{\rho_n(t)\}_{n=1}^{\infty}$ of non-negative continuous functions on J such that

(3.2)
$$\rho_n(t) = 0 \quad \text{for} \quad |t| \ge n^{-1}, \int_{-n^{-1}}^{n^{-1}} \rho_n(t) \, dt = 1.$$

The convolution between u and ρ_n is defined by

(3.3)
$$(u * \rho_n)(t) = \int_{J} u(t-s)\rho_n(s) \ ds = \int_{J} u(s)\rho_n(t-s) \ ds.$$

From (1.3), it follows that

(3.4)
$$\frac{d^2}{dt^2}(u*\rho_n)(t) - B(u*\rho_n)(t) = (g*\rho_n)(t) \text{ on } J.$$

As shown in Rao [4], $(u * \rho_n)(t)$ is bounded on J for all $n \ge 1$ and $(g * \rho_n)(t)$ is almost periodic from J to X for all $n \ge 1$.

Therefore it follows from our assumption on the operator $d^2/dt^2 - B$ that $(u * \rho_n)(t)$ is S^1 -almost periodic from J to X for all $n \ge 1$. The only use made of this assumption in this paper is to guarantee that $(u * \rho_n)(t)$ is almost periodic in the Stepanov sense.

Further, by the uniform continuity of u'(t) on J, we can show that $(u' * \rho_n)(t)$ is uniformly continuous on J.

Now we have

(3.5)
$$(u * \rho_n)'(t) = (u' * \rho_n)(t) \text{ on } J.$$

Hence $(u * \rho_n)'(t)$ is uniformly continuous on J. Thus, by Lemma (A), $(u * \rho_n)(t)$ and $(u' * \rho_n)(t)$ are both almost periodic from J to X for all $n \ge 1$.

Again by the uniform continuity of u'(t) on J, the sequence of convolutions $(u'*\rho_n)(t)$ converges to u'(t) as $n\to\infty$, uniformly on J. So u'(t) is almost periodic from J to X, and hence is bounded on J. Therefore u(t) is uniformly continuous on J. Consequently, $(u*\rho_n)(t)\to u(t)$ as $n\to\infty$, uniformly on J. So u(t) is almost periodic from J to X, which completes the proof of the theorem.

- 4. Notes. (i) For p=1, our Theorem remains valid for any S^1 -bounded uniformly continuous solution of the equation (1.3).
- (ii) Suppose X is a separable Hilbert space, and consider the second-order operator differential equation

$$\frac{d^2}{dt^2}u(t) - Bu(t) = f(t) \quad \text{on} \quad J, \quad \text{where} \quad f: J \to X \quad \text{is}$$

an almost periodic function and B is a completely continuous linear operator in X commuting with its adjoint (see p. 258, Bochner-Neumann [2]). Then, by Theorem 1 of Cooke [3], the operator d^2/dt^2-B has Bohr-Neugebauer property. Now suppose that u(t) is an S^p -bounded solution (1 of the above differential equation.

If we replace g by f in the proof of our Theorem, then, by the Bohr-Neugebauer property of the operator d^2/dt^2-B , it follows that u(t) is almost periodic from J to X. Thus, in this case, the operator d^2/dt^2-B satisfies the assumption of our Theorem for p>1.

- (iii) Now suppose X is a Hilbert space and B is a bounded linear operator in X with $B \ge 0$. Then the operator $d^2/dt^2 B$ has Bohr-Neugebauer property (see Zaidman [6]). Consequently, the operator $d^2/dt^2 B$ satisfies the hypothesis of our Theorem for p > 1.
- (iv) Finally, suppose X is a reflexive Banach space and B=0. Given an almost periodic X-valued function f(t), suppose u(t) is a bounded solution of the differential equation

(4.1)
$$\frac{d^2}{dt^2}u(t) = f(t) \quad \text{on} \quad J.$$

Then we have the representation

(4.2)
$$u'(t) = u'(0) + \int_0^t f(s) \, ds \quad \text{on} \quad J.$$

By Lemma 2 of Cooke [3], it follows from (4.1) that u'(t) is bounded on J. Consequently, by (4.2), u'(t) is almost periodic from J to X (see Amerio-Prouse [1], p. 55 and Authors' Remark on p. 82). Therefore u(t) is also almost periodic from J to X. Hence the operator d^2/dt^2 has Bohr-Neugebauer property.

Now, given an S^1 -almost periodic continuous X-valued function g(t), suppose u(t) is an S^p -bounded solution $(1 \le p < \infty)$ of the differential equation

(4.3)
$$\frac{d^2}{dt^2}u(t) = g(t) \quad \text{on} \quad J.$$

From (4.3), it follows that

(4.4)
$$\frac{d^2}{dt^2}(u*\rho_n)(t) = (g*\rho_n)(t) \quad \text{on} \quad J,$$

where $\{\rho_n(t)\}_{n=1}^{\infty}$ is the sequence defined in the proof of our Theorem.

6

396 A. S. RAO

Then $(u*\rho_n)(t)$ is bounded on J and $(g*\rho_n)(t)$ is almost periodic from J to X. As shown above, $(u*\rho_n)(t)$ and $(u*\rho_n)'(t)=(u'*\rho_n)(t)$ are both almost periodic from J to X.

By (4.3), it follows from Theorem 8, p. 79, Amerio-Prouse [1] that u'(t) is uniformly continuous on J. So $(u'*\rho_n)(t)\rightarrow u'(t)$ as $n\rightarrow\infty$, uniformly on J. Hence u'(t) is almost periodic from J to X. Therefore u(t) is uniformly continuous on J, and hence $(u*\rho_n)(t)\rightarrow u(t)$ as $n\rightarrow\infty$, uniformly on J. Consequently, u(t) is almost periodic from J to X. So the operator d^2/dt^2 satisfies the assumption of our Theorem for $1\leq p<\infty$.

The author wishes to thank Professor S. Zaidman for the financial support from his N.R.C. grant during the preparation of this paper.

REFERENCES

- 1. L. Amerio and G. Prouse, Almost periodic functions and functional equations, Van Nostrand Reinhold Company (1971).
- 2. S. Bochner and J. V. Neumann, On compact solutions of operational-differential equations I, Annals of Mathematics, vol. 36 (1935), pp. 255-291.
- 3. R. Cooke, Almost periodicity of bounded and compact solutions of differential equations, The Duke Mathematical Journal, vol. 36 (1969), pp. 273-276.
- 4. A. S. Rao, On differential operators with Bohr-Neugebauer type property, Journal of Differential Equations, vol. 13 (1973), pp. 490-494.
- 5. A. S. Rao and Hengartner, On the existence of a unique almost periodic solution of an abstract differential equation, Journal of the London Mathematical Society (2), vol. 8 (1974), pp. 577-581.
- 6. S.Zaidman, Soluzioni quasi-periodiche per alcune equazioni differenziali in spazi hilbertianis, Ricerche di Matematica, vol. 13 (1964), pp. 118-134.
- 7. S. Zaidman, A remark on differential operators with Bohr-Neugebauer property, Istituto Lombardo, Rendiconti, Classe di Scienze (A), vol. 105 (1971), pp. 708-712.

DÉPARTEMENT DE MATHÉMATIQUES UNIVERSITÉ DE MONTRÉAL MONTRÉAL, QUÉBEC CANADA