We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We use a special tiling for the hyperbolic d-space $\mathbb {H}^d$ for $d=2,3,4$ to construct an (almost) explicit isomorphism between the Lipschitz-free space $\mathcal {F}(\mathbb {H}^d)$ and $\mathcal {F}(P)\oplus \mathcal {F}(\mathcal {N})$, where P is a polytope in $\mathbb {R}^d$ and $\mathcal {N}$ a net in $\mathbb {H}^d$ coming from the tiling. This implies that the spaces $\mathcal {F}(\mathbb {H}^d)$ and $\mathcal {F}(\mathbb {R}^d)\oplus \mathcal {F}(\mathcal {M})$ are isomorphic for every net $\mathcal {M}$ in $\mathbb {H}^d$. In particular, we obtain that, for $d=2,3,4$, $\mathcal {F}(\mathbb {H}^d)$ has a Schauder basis. Moreover, using a similar method, we also give an explicit isomorphism between $\mathrm {Lip}(\mathbb {H}^d)$ and $\mathrm {Lip}(\mathbb {R}^d)$.
In this work, we present an alternative approach to obtain a solenoidal Lipschitz truncation result in the spirit of D. Breit, L. Diening and M. Fuchs [Solenoidal Lipschitz truncation and applications in fluid mechanics. J. Differ. Equ. 253 (2012), 1910–1942.]. More precisely, the goal of the truncation is to modify a function $u \in W^{1,p}(\mathbb {R}^N;\mathbb {R}^N)$ that satisfies the additional constraint $\operatorname {div} u=0$, such that its modification $\tilde {u}$ is Lipschitz continuous and divergence-free. This approach is different to the approaches outlined in the aforementioned work and D. Breit, L. Diening and S. Schwarzacher [Solenoidal Lipschitz truncation for parabolic PDEs. Math. Models Methods Appl. Sci. 23 (2013), 2671–2700, Section 4] and is able to obtain the rather strong bound on the difference between $u$ and $\tilde {u}$ from the former article. Finally, we outline how the approach pursued in this work may be generalized to closed differential forms.
We determine the distance (up to a multiplicative constant) in the Zygmund class
$\Lambda _{\ast }(\mathbb {R}^n)$
to the subspace
$\mathrm {J}_{}(\mathbf {bmo})(\mathbb {R}^n).$
The latter space is the image under the Bessel potential
$J := (1-\Delta )^{{-1}/2}$
of the space
$\mathbf {bmo}(\mathbb {R}^n)$
, which is a nonhomogeneous version of the classical
$\mathrm {BMO}$
. Locally,
$\mathrm {J}_{}(\mathbf {bmo})(\mathbb {R}^n)$
consists of functions that together with their first derivatives are in
$\mathbf {bmo}(\mathbb {R}^n)$
. More generally, we consider the same question when the Zygmund class is replaced by the Hölder space
$\Lambda _{s}(\mathbb {R}^n),$
with
$0 < s \leq 1$
, and the corresponding subspace is
$\mathrm {J}_{s}(\mathbf {bmo})(\mathbb {R}^n)$
, the image under
$(1-\Delta )^{{-s}/2}$
of
$\mathbf {bmo}(\mathbb {R}^n).$
One should note here that
$\Lambda _{1}(\mathbb {R}^n) = \Lambda _{\ast }(\mathbb {R}^n).$
Such results were known earlier only for
$n = s = 1$
with a proof that does not extend to the general case.
Our results are expressed in terms of second differences. As a by-product of our wavelet-based proof, we also obtain the distance from
$f \in \Lambda _{s}(\mathbb {R}^n)$
to
$\mathrm {J}_{s}(\mathbf {bmo})(\mathbb {R}^n)$
in terms of the wavelet coefficients of
$f.$
We additionally establish a third way to express this distance in terms of the size of the hyperbolic gradient of the harmonic extension of f on the upper half-space
$\mathbb {R}^{n +1}_+$
.
By an influential theorem of Boman, a function $f$ on an open set $U$ in $\mathbb{R}^{d}$ is smooth (${\mathcal{C}}^{\infty }$) if and only if it is arc-smooth, that is, $f\,\circ \,c$ is smooth for every smooth curve $c:\mathbb{R}\rightarrow U$. In this paper we investigate the validity of this result on closed sets. Our main focus is on sets which are the closure of their interior, so-called fat sets. We obtain an analogue of Boman’s theorem on fat closed sets with Hölder boundary and on fat closed subanalytic sets with the property that every boundary point has a basis of neighborhoods each of which intersects the interior in a connected set. If $X\subseteq \mathbb{R}^{d}$ is any such set and $f:X\rightarrow \mathbb{R}$ is arc-smooth, then $f$ extends to a smooth function defined on $\mathbb{R}^{d}$. We also get a version of the Bochnak–Siciak theorem on all closed fat subanalytic sets and all closed sets with Hölder boundary: if $f:X\rightarrow \mathbb{R}$ is the restriction of a smooth function on $\mathbb{R}^{d}$ which is real analytic along all real analytic curves in $X$, then $f$ extends to a holomorphic function on a neighborhood of $X$ in $\mathbb{C}^{d}$. Similar results hold for non-quasianalytic Denjoy–Carleman classes (of Roumieu type). We will also discuss sharpness and applications of these results.
Let Q be the open unit square in ℝ2. We prove that in a natural complete metric space of BV homeomorphisms f : Q → Q with f|∂Q = Id, residually many homeomorphisms (in the sense of Baire categories) map a null set onto a set of full measure, and vice versa. Moreover, we observe that for 1 ⩽ p < 2, the family of W1,p homemomorphisms satisfying the above property is of the first category.
Let ${{C}^{M}}$ denote a Denjoy–Carleman class of ${{C}^{\infty }}$ functions (for a given logarithmically-convex sequence $M\,=\,\left( {{M}_{n}} \right))$. We construct: (1) a function in ${{C}^{M}}\left( \left( -1,\,1 \right) \right)$ that is nowhere in any smaller class; (2) a function on $\mathbb{R}$ that is formally ${{C}^{M}}$ at every point, but not in ${{C}^{M}}\left( \mathbb{R} \right)$; (3) (under the assumption of quasianalyticity) a smooth function on ${{\mathbb{R}}^{p}}\,\left( p\,\ge \,2 \right)$ that is ${{C}^{M}}$ on every ${{C}^{M}}$ curve, but not in ${{C}^{M}}\left( {{\mathbb{R}}^{p}} \right)$.
This paper presents a new type of fractal surfaces called the Takagi surfaces. These are obtained by summing up pyramids of increasing (doubling) frequencies scaled by a geometric ratio b. The fractal dimension (box dimension) of the graph of these functions is shown to be log 8b/log 2.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.