We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper is concerned with singular projective rationally connected threefolds $X$ which carry non-zero pluri-forms, that is the reflexive hull of $({\rm\Omega}_{X}^{1})^{\otimes m}$ has a non-zero global section for some positive integer $m$. If $X$ has $\mathbb{Q}$-factorial terminal singularities, then we show that there is a fibration $p$ from $X$ to $\mathbb{P}^{1}$. Moreover, we give a formula for the numbers of $m$-pluri-forms as a function of the ramification of the fibration $p$.
We discuss a possible approach to the study of the vanishing of the Kobayashi pseudo-metric of a projective variety X, using chains of rational or elliptic curves contained in an arbitrarily small neighbourhood of X in projective space for the Euclidean topology.
We prove that the space of smooth rational curves of degree $e$ on a general complete intersection of multidegree $(d_1, \ldots , d_m)$ in $\mathbb {P}^n$ is irreducible of the expected dimension if $\sum _{i=1}^m d_i \lt (2n+m+1)/3$ and $n$ is sufficiently large. This generalizes a result of Harris, Roth and Starr [Rational curves on hypersurfaces of low degree, J. Reine Angew. Math. 571 (2004), 73–106], and is achieved by proving that the space of conics passing through any point of a general complete intersection has constant dimension if $\sum _{i=1}^m d_i$ is small compared to $n$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.