Generally, 14C is produced in all types of reactors, mainly through neutron-induced reactions with isotopes of carbon, nitrogen, and oxygen. These isotopes are present in the fuel, fuel cladding, coolant, moderator, and structural materials of the reactor. Irradiated graphite contains a range of activation products but, from the point of view of geological disposal, another radionuclide which has to be taken into account is tritium (3H or T), produced through the neutron induced reaction Li(n,α)T. In this study we have investigated the release of 14C and 3H into the solution phase from two intact samples of irradiated graphite which have been cut from the thermal column disc located near the VVR-S reactor core. To evaluate 14C and 3H long-term release in solution the graphite samples were submerged in a solution of 0.1 M of sodium hydroxide. The experimental results regarding the release of 14C and 3H from VVR-S irradiated graphite to liquid phase show that a major fraction of the total release occurs in the first months and a slower release on a long time scale. However, these results should be applied cautiously for long time prediction.