We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let \[||x||\] denote the distance from \[x \in \mathbb{R}\] to the nearest integer. In this paper, we prove a new existence and density result for matrices \[A \in {\mathbb{R}^{m \times n}}\] satisfying the inequality
where q ranges in \[{\mathbb{Z}^n}\] and Ai denote the rows of the matrix A. This result extends previous work of Moshchevitin both to arbitrary dimension and to the inhomogeneous setting. The estimates needed to apply Moshchevitin’s method to the case m > 2 are not currently available. We therefore develop a substantially different method, based on Cantor-like set constructions of Badziahin and Velani. Matrices with the above property also appear to have very small sums of reciprocals of fractional parts. This fact helps us to shed light on a question raised by Lê and Vaaler on such sums, thereby proving some new estimates in higher dimension.
Let
${\mathbf {G}}$
be a semisimple algebraic group over a number field K,
$\mathcal {S}$
a finite set of places of K,
$K_{\mathcal {S}}$
the direct product of the completions
$K_{v}, v \in \mathcal {S}$
, and
${\mathcal O}$
the ring of
$\mathcal {S}$
-integers of K. Let
$G = {\mathbf {G}}(K_{\mathcal {S}})$
,
$\Gamma = {\mathbf {G}}({\mathcal O})$
and
$\pi :G \rightarrow G/\Gamma $
the quotient map. We describe the closures of the locally divergent orbits
${T\pi (g)}$
where T is a maximal
$K_{\mathcal {S}}$
-split torus in G. If
$\# S = 2$
then the closure
$ \overline{T\pi (g)}$
is a finite union of T-orbits stratified in terms of parabolic subgroups of
${\mathbf {G}} \times {\mathbf {G}}$
and, consequently,
$\overline{T\pi (g)}$
is homogeneous (i.e.
$\overline{T\pi (g)}= H\pi (g)$
for a subgroup H of G) if and only if
${T\pi (g)}$
is closed. On the other hand, if
$\# \mathcal {S}> 2$
and K is not a
$\mathrm {CM}$
-field then
$\overline {T\pi (g)}$
is homogeneous for
${\mathbf {G}} = \mathbf {SL}_{n}$
and, generally, non-homogeneous but squeezed between closed orbits of two reductive subgroups of equal semisimple K-ranks for
${\mathbf {G}} \neq \mathbf {SL}_{n}$
. As an application, we prove that
$\overline {f({\mathcal O}^{n})} = K_{\mathcal {S}}$
for the class of non-rational locally K-decomposable homogeneous forms
$f \in K_{\mathcal {S}}[x_1, \ldots , x_{n}]$
.
We prove a new upper bound for the smallest zero $x$ of a quadratic form over a number field with the additional restriction that $x$ does not lie in a finite number of $m$ prescribed hyperplanes. Our bound is polynomial in the height of the quadratic form, with an exponent depending only on the number of variables but not on $m$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.