We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Radiocarbon ages on mollusk shells, which account for about half of the more than 8,000 dates from cultural deposits on the west coast of North America, need to be corrected for the local marine reservoir effect (ΔR) to yield true ages. Assays on “prebomb” shells show that ΔR increases poleward, echoing the age gradient in offshore waters. The meridional gradient in ΔR is not appreciably affected by the transition either from an upwelling regime to a downwelling regime north of 40°N–45°N or from a winter maximum-high alkalinity river discharge pattern to a summer maximum-low alkalinity pattern at the same latitude, probably because these changes are offset by increasing storminess and tidal energy in coastal areas. Mesoscale variations in ΔR along this gradient are attributable to contrasts in shore morphology and exposure. Data from 123 shell-wood pairs reveal similar patterns of temporal variation in ΔR in the late Holocene in the coastal ecoregions. The characteristic temporal pattern echoes phases of variable El Niño-Southern Oscillation (ENSO) activity. The high degree of variability in ΔR argues against the indiscriminate application of regionally uniform or trans-Holocene ΔR values and demands improvements in spatiotemporal resolution if shell is used to date cultural deposits.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.