We study a two-grid scheme fully discrete in time andspace for solving the Navier-Stokes system. In the first step, thefully non-linear problem is discretized in space on a coarse gridwith mesh-size H and time step k. In the second step, theproblem is discretized in space on a fine grid with mesh-size hand the same time step, and linearized around the velocity u H computed in the first step. The two-grid strategy is motivated bythe fact that under suitable assumptions, the contribution ofu H to the error in the non-linear term, is measured in theL 2 norm in space and time, and thus has a higher-order than ifit were measured in the H 1 norm in space. We present thefollowing results: if h = H2 = k, then the global error ofthe two-grid algorithm is of the order of h, the same as wouldhave been obtained if the non-linear problem had been solveddirectly on thefine grid.