We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Bismuth (Bi)-based photocatalytic materials are widely used in the field of photocatalytic degradation of wastewater. In this study, β-Bi2O3/BiOBr heterojunction photocatalysts were prepared by an in situ chemical transformation method. BiOBr molecules are arrayed to cross each other to form a pore around β-Bi2O3. The prepared photocatalyst had a large specific surface area and excellent adsorption and photocatalytic properties. The β-Bi2O3/BiOBr with a molecular ratio of 11.1% had the highest catalytic activity. The result of a degradation experiment, performed with Rhodamine B (RhB) as the target pollutant, revealed that the degradation rate reached 99.85% after 25 min under visible light irradiation. The pore structure can adsorb contaminants and the heterojunction facilitates the separation of photogenerated electron–hole pairs to enhance the photocatalytic properties. The high adsorption performance and heterojunction achieved higher photocatalytic efficiency. This semiconductor photocatalyst with high adsorption performance provides a new approach to control water pollution.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.