A new semianalytical theory of asteroid motion is presented. The theory is developed on the basis of Kaula’s expansion of the disturbing function including terms up to the second order with respect to the masses of disturbing bodies. The theory is constructed in explicit form that gives the possibility to study separately the influence of different perturbations in the dynamics of minor planets. The mean-motion resonances with major planets as well as mixed three-body resonances can also be taken into account. For the non-resonant case the formulas obtained can be used for deriving the second transformation to calculate the proper elements of an asteroid orbit in closed form with respect to inclinations and eccentricities.