Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-02T18:03:40.708Z Has data issue: false hasContentIssue false

On the kinetics of internal gravity waves beyond the hydrostatic regime

Published online by Cambridge University Press:  25 October 2024

Vincent Labarre*
Affiliation:
Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, 06304 Nice, France
Nicolas Lanchon*
Affiliation:
Université Paris-Saclay, CNRS, FAST, 91405 Orsay, France
Pierre-Philippe Cortet*
Affiliation:
Université Paris-Saclay, CNRS, FAST, 91405 Orsay, France
Giorgio Krstulovic*
Affiliation:
Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, 06304 Nice, France
Sergey Nazarenko*
Affiliation:
Université Côte d'Azur, CNRS, Institut de Physique de Nice – INPHYNI, 06200 Nice, France

Abstract

We present a new derivation of the kinetic equation for weak, non-hydrostatic internal gravity wave turbulence. The equation is equivalent to the one obtained by Caillol & Zeitlin (Dyn. Atmos. Oceans, vol. 32, issue 2, 2000, pp. 81–112), but it takes a canonical form. We show that it conserves the energy without involving the resonance condition in frequency, and look for the isotropic part of the steady, scale-invariant solutions. We provide a parametrization of the resonant manifold of non-hydrostatic internal gravity wave triadic interactions. This allows us to simplify the collision integral, and to evaluate the transfer coefficients of all triadic interactions. In the hydrostatic limit, our equation is equivalent to the Hamiltonian description of Lvov & Tabak (Phys. Rev. Lett., vol. 87, issue 16, 2001, 168501).

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balk, A.M. & Nazarenko, S.V. 1990 On the physical realisability of anisotropic Kolmogorov spectra of weak turbulence. Sov. Phys. JETP 70, 10311041.Google Scholar
Bartello, P. 1995 Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atmos. Sci. 52 (24), 44104428.2.0.CO;2>CrossRefGoogle Scholar
Caillol, P. & Zeitlin, V. 2000 Kinetic equations and stationary energy spectra of weakly nonlinear internal gravity waves. Dyn. Atmos. Oceans 32 (2), 81112.CrossRefGoogle Scholar
Caillol, P. & Zeitlin, V. 2001 Erratum to “Kinetic equations and stationary energy spectra of weakly nonlinear internal gravity waves” [dyn. atmos. oceans 32 (2000) 81–112]. Dyn. Atmos. Oceans 33 (4), 325326.CrossRefGoogle Scholar
Craya, A. 1957 Contribution á l'analyse de la turbulence associée à des vitesses moyennes. PhD thesis, Université de Grenoble.Google Scholar
Dematteis, G. & Lvov, Y.V. 2021 Downscale energy fluxes in scale-invariant oceanic internal wave turbulence. J. Fluid Mech. 915, A129.CrossRefGoogle Scholar
Eden, C., Pollmann, F. & Olbers, D. 2019 Numerical evaluation of energy transfers in internal gravity wave spectra of the ocean. J. Phys. Oceanogr. 49 (3), 737749.CrossRefGoogle Scholar
Galtier, S. 2022 Physics of Wave Turbulence. Cambridge University Press.CrossRefGoogle Scholar
Godeferd, F.S., Delache, A. & Cambon, C. 2010 Toroidal/poloidal modes dynamics in anisotropic turbulence. In Turbulence and Interactions (ed. M. Deville, T.-H. Lê & P. Sagaut), pp. 151–158. Springer.CrossRefGoogle Scholar
Hasselmann, K. 1966 Feynman diagrams and interaction rules of wave-wave scattering processes. Rev. Geophys. 4 (1), 132.CrossRefGoogle Scholar
Hasselmann, K. 1967 Nonlinear interactions treated by the methods of theoretical physics (with application to the generation of waves by wind). Proc. R. Soc. Lond. A 299 (1456), 77103.Google Scholar
Herring, J.R. 1974 Approach of axisymmetric turbulence to isotropy. Phys. Fluids 17 (5), 859872.CrossRefGoogle Scholar
Kuznetsov, E.A. 1972 Turbulence of ion sound in a plasma located in a magnetic field. Sov. Phys. JETP 35, 310314.Google Scholar
Lam, H., Delache, A. & Godeferd, F.S. 2021 Energy balance and mixing between waves and eddies in stably stratified turbulence. J. Fluid Mech. 923, A31.CrossRefGoogle Scholar
Lanchon, N. & Cortet, P.-P. 2023 Energy spectra of nonlocal internal gravity wave turbulence. Phys. Rev. Lett. 131, 264001.CrossRefGoogle ScholarPubMed
Lanchon, N., Mora, D.O., Monsalve, E. & Cortet, P.-P. 2023 Internal wave turbulence in a stratified fluid with and without eigenmodes of the experimental domain. Phys. Rev. Fluids 8, 054802.CrossRefGoogle Scholar
Le Reun, T., Favier, B. & Le Bars, M. 2018 Parametric instability and wave turbulence driven by tidal excitation of internal waves. J. Fluid Mech. 840, 498529.CrossRefGoogle Scholar
Lelong, M.P. & Riley, J.J. 1991 Internal wave–vortical mode interactions in strongly stratified flows. J. Fluid Mech. 232, 119.CrossRefGoogle Scholar
Lvov, Y. & Tabak, E.G. 2004 A hamiltonian formulation for long internal waves. Physica D 195 (1), 106122.CrossRefGoogle Scholar
Lvov, Y.V., Polzin, K.L. & Tabak, E.G. 2004 Energy spectra of the ocean's internal wave field: theory and observations. Phys. Rev. Lett. 92 (12), 128501.CrossRefGoogle ScholarPubMed
Lvov, Y.V., Polzin, K.L., Tabak, E.G. & Yokoyama, N. 2010 Oceanic internal-wave field: theory of scale-invariant spectra. J. Phys. Oceanogr. 40 (12), 26052623.CrossRefGoogle Scholar
Lvov, Y.V., Polzin, K.L. & Yokoyama, N. 2012 Resonant and near-resonant internal wave interactions. J. Phys. Oceanogr. 42 (5), 669691.CrossRefGoogle Scholar
Lvov, Y.V. & Tabak, E.G. 2001 Hamiltonian formalism and the Garrett–Munk spectrum of internal waves in the ocean. Phys. Rev. Lett. 87 (16), 168501.CrossRefGoogle ScholarPubMed
MacKinnon, J.A., Alford, M.H., Sun, O., Pinkel, R., Zhao, Z. & Klymak, J. 2013 Parametric subharmonic instability of the internal tide at 29$^{\circ }$n. J. Phys. Oceanogr. 43 (1), 1728.CrossRefGoogle Scholar
Maffioli, A., Delache, A. & Godeferd, F.S. 2020 Signature and energetics of internal gravity waves in stratified turbulence. Phys. Rev. Fluids 5, 114802.CrossRefGoogle Scholar
McComas, C.H. & Bretherton, F.P. 1977 Resonant interaction of oceanic internal waves. J. Geophys. Res. 82 (9), 13971412.CrossRefGoogle Scholar
Medvedev, S.B. & Zeitlin, V. 2007 Turbulence of near-inertial waves in the continuously stratified fluid. Phys. Lett. A 371 (3), 221227.CrossRefGoogle Scholar
Milder, D.M. 1982 Hamiltonian dynamics of internal waves. J. Fluid Mech. 119, 269282.CrossRefGoogle Scholar
Müller, P., Holloway, G., Henyey, F. & Pomphrey, N. 1986 Nonlinear interactions among internal gravity waves. Rev. Geophys. 24 (3), 493536.CrossRefGoogle Scholar
Müller, P. & Olbers, D.J. 1975 On the dynamics of internal waves in the deep ocean. J. Geophys. Res. 80 (27), 38483860.CrossRefGoogle Scholar
Nazarenko, S. 2011 Wave Turbulence. Lecture Notes in Physics, vol. 825. Springer.CrossRefGoogle Scholar
Olbers, D., Pollmann, F. & Eden, C. 2020 On psi interactions in internal gravity wave fields and the decay of baroclinic tides. J. Phys. Oceanogr. 50 (3), 751771.CrossRefGoogle Scholar
Olbers, D.J. 1974 On the Energy Balance of Small-Scale Internal Waves in the Deep-Sea, vol. 24. Hamburger Geophysikalische Einzelschriften.Google Scholar
Olbers, D.J. 1976 Nonlinear energy transfer and the energy balance of the internal wave field in the deep ocean. J. Fluid Mech. 74 (2), 375399.CrossRefGoogle Scholar
Pan, Y., Arbic, B.K., Nelson, A.D., Menemenlis, D., Peltier, W.R., Xu, W. & Li, Y. 2020 Numerical investigation of mechanisms underlying oceanic internal gravity wave power-law spectra. J. Phys. Oceanogr. 50 (9), 27132733.CrossRefGoogle Scholar
Pelinovsky, E.N. & Raevsky, M.A. 1977 Weak turbulence of the internal waves of the ocean. Atm. Ocean Phys.-Izv. 13, 187193.Google Scholar
Remmel, M. & Smith, L. 2009 New intermediate models for rotating shallow water and an investigation of the preference for anticyclones. J. Fluid Mech. 635, 321359.CrossRefGoogle Scholar
Rodda, C., Savaro, C., Davis, G., Reneuve, J., Augier, P., Sommeria, J., Valran, T., Viboud, S. & Mordant, N. 2022 Experimental observations of internal wave turbulence transition in a stratified fluid. Phys. Rev. Fluids 7, 094802.CrossRefGoogle Scholar
Shavit, M., Bühler, O. & Shatah, J. 2024 Sign-indefinite invariants shape turbulent cascades. Phys. Rev. Lett. 133, 014001.CrossRefGoogle ScholarPubMed
Staquet, C. & Sommeria, J. 2002 Internal gravity waves: from instabilities to turbulence. Annu. Rev. Fluid Mech. 34 (1), 559593.CrossRefGoogle Scholar
Vallis, G.K. 2017 Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation, 2nd edn. Cambridge University Press.CrossRefGoogle Scholar
Voronovich, A.G. 1979 Hamiltonian formalism for internal waves in the ocean. Izv. Acad. Sci. USSR Ser. Phys. Atm. Ocean 15 (1), 8291.Google Scholar
Wolfram Research, Inc. 2024 Mathematica, Version 14.0. Champaign, IL, 2024.Google Scholar
Wu, Y. & Pan, Y. 2023 Energy cascade in the Garrett–Munk spectrum of internal gravity waves. J. Fluid Mech. 975, A11.CrossRefGoogle Scholar
Yokoyama, N. & Takaoka, M. 2019 Energy-based analysis and anisotropic spectral distribution of internal gravity waves in strongly stratified turbulence. Phys. Rev. Fluids 4, 104602.CrossRefGoogle Scholar
Zakharov, V.E., L'vov, V.S. & Falkovich, G. 1992 Kolmogorov Spectra of Turbulence I. Springer Series in Nonlinear Dynamics, vol. 1. Springer.CrossRefGoogle Scholar
Supplementary material: File

Labarre et al. supplementary material 1

Labarre et al. supplementary material
Download Labarre et al. supplementary material 1(File)
File 6.6 KB
Supplementary material: File

Labarre et al. supplementary material 2

Labarre et al. supplementary material
Download Labarre et al. supplementary material 2(File)
File 3.6 KB