Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-02T17:44:56.689Z Has data issue: false hasContentIssue false

Swimming efficiency in viscosity gradients

Published online by Cambridge University Press:  24 October 2024

Jiahao Gong
Affiliation:
Department of Mathematics, Institute of Applied Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
Vaseem A. Shaik
Affiliation:
Department of Mechanical Engineering, Institute of Applied Mathematics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
Gwynn J. Elfring*
Affiliation:
Department of Mathematics, Institute of Applied Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada Department of Mechanical Engineering, Institute of Applied Mathematics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
*
Email address for correspondence: [email protected]

Abstract

In this note, we study the effect of viscosity gradients on the energy dissipated by the motion of microswimmers and the associated efficiency of that motion. Using spheroidal squirmer model swimmers in weak linearly varying viscosity fields, we find that efficiency depends on whether they generate propulsion from the back (pushers) or the front (pullers). Pushers are faster and more efficient when moving down gradients, but slower and less efficient moving up viscosity gradients, and the opposite is true for pullers. However, both pushers and pullers display negative viscotaxis, therefore pushers dynamically tend to the most efficient orientation, while pullers tend to the least. We also evaluate the effect of shape on power expenditure and efficiency when swimming in viscosity gradients, and find that in general, the change in both due to gradients decreases monotonically with increasing slenderness. This work shows how shape and gait play an important role in determining dynamics and efficiency in inhomogeneous environments, and demonstrating that both efficiency minimizing and maximizing stable dynamical states are possible.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I.A. 1964 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover.Google Scholar
Anand, V. & Narsimhan, V. 2024 Sedimentation of spheroids in Newtonian fluids with spatially varying viscosity. J. Fluid Mech. 983, A28.CrossRefGoogle Scholar
Bahat, A., Tur-Kaspa, I., Gakamsky, A., Giojalas, L.C., Breitbart, H. & Eisenbach, M. 2003 Thermotaxis of mammalian sperm cells: a potential navigation mechanism in the female genital tract. Nat. Med. 9, 149150.CrossRefGoogle Scholar
Bechinger, C., Di Leonardo, R., Löwen, H., Reichhardt, C., Volpe, G. & Volpe, G. 2016 Active particles in complex and crowded environments. Rev. Mod. Phys. 88, 045006.CrossRefGoogle Scholar
Berg, H.C. 2004 E. coli in Motion. Springer.CrossRefGoogle Scholar
Berg, H.C. & Brown, D.A. 1972 Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239, 500504.CrossRefGoogle ScholarPubMed
Blake, J.R. 1971 A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46, 199208.CrossRefGoogle Scholar
Brennen, C. & Winet, H. 1977 Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech. 9, 339398.CrossRefGoogle Scholar
Chattopadhyay, S., Moldovan, R., Yeung, C. & Wu, X.L. 2006 Swimming efficiency of bacterium Escherichia coli. Proc. Natl Acad. Sci. 103, 1371213717.CrossRefGoogle ScholarPubMed
Chi, H., Gavrikov, A., Berlyand, L. & Aranson, I.S. 2022 Interaction of microswimmers in viscoelastic liquid crystals. Commun. Phys. 5, 274.CrossRefGoogle Scholar
Childress, S. 2012 A thermodynamic efficiency for Stokesian swimming. J. Fluid Mech. 705, 7797.CrossRefGoogle Scholar
Coppola, S. & Kantsler, V. 2021 Green algae scatter off sharp viscosity gradients. Sci. Rep. 11, 399.CrossRefGoogle ScholarPubMed
Daddi-Moussa-Ider, A., Golestanian, R. & Vilfan, A. 2023 Minimum entropy production by microswimmers with internal dissipation. Nat. Commun. 14, 6060.CrossRefGoogle ScholarPubMed
Dandekar, R. & Ardekani, A.M. 2020 Swimming sheet in a viscosity-stratified fluid. J. Fluid Mech. 895, R2.CrossRefGoogle Scholar
Daniels, M.J., Longland, J.M. & Gilbart, J. 1980 Aspects of motility and chemotaxis in spiroplasmas. Microbiology 118, 429436.CrossRefGoogle Scholar
Datt, C. & Elfring, G.J. 2019 Active particles in viscosity gradients. Phys. Rev. Lett. 123, 158006.CrossRefGoogle ScholarPubMed
De Corato, M., Greco, F. & Maffettone, P.L. 2015 Locomotion of a microorganism in weakly viscoelastic liquids. Phys. Rev. E 92, 053008.CrossRefGoogle ScholarPubMed
Elgeti, J., Winkler, R.G. & Gompper, G. 2015 Physics of microswimmers – single particle motion and collective behavior: a review. Rep. Prog. Phys. 78, 056601.CrossRefGoogle ScholarPubMed
Gaffney, E.A., Gadêlha, H., Smith, D.J., Blake, J.R. & Kirkman-Brown, J.C. 2011 Mammalian sperm motility: observation and theory. Annu. Rev. Fluid Mech. 43, 501528.CrossRefGoogle Scholar
van Gogh, B., Demir, E., Palaniappan, D. & Pak, O.S. 2022 The effect of particle geometry on squirming through a shear-thinning fluid. J. Fluid Mech. 938, A3.CrossRefGoogle Scholar
Gong, J., Shaik, V.A. & Elfring, G.J. 2023 Active particles crossing sharp viscosity gradients. Sci. Rep. 13, 596.CrossRefGoogle ScholarPubMed
Gong, J., Shaik, V.A. & Elfring, G.J. 2024 Active spheroids in viscosity gradients. J. Fluid Mech. 984, A26.CrossRefGoogle Scholar
Ishikawa, T. 2024 Fluid dynamics of squirmers and ciliated microorganisms. Annu. Rev. Fluid Mech. 56, 119145.CrossRefGoogle Scholar
Ishikawa, T. & Pedley, T.J. 2023 a 50-year history and perspective on biomechanics of swimming microorganisms. Part I. Individual behaviours. J. Biomech. 158, 111706.CrossRefGoogle ScholarPubMed
Ishikawa, T. & Pedley, T.J. 2023 b 50-year history and perspective on biomechanics of swimming microorganisms. Part II. Collective behaviours. J. Biomech. 160, 111802.CrossRefGoogle ScholarPubMed
Ishimoto, K. & Gaffney, E.A. 2014 Swimming efficiency of spherical squirmers: beyond the Lighthill theory. Phys. Rev. E 90, 012704.CrossRefGoogle ScholarPubMed
Jékely, G. 2009 Evolution of phototaxis. Phil. Trans. R. Soc. Lond. B, Biol. Sci. 364, 27952808.CrossRefGoogle ScholarPubMed
Kaiser, G.E. & Doetsch, R.N. 1975 Enhanced translational motion of Leptospira in viscous environments. Nature 255, 656657.CrossRefGoogle ScholarPubMed
Kamal, C. & Lauga, E. 2023 Resistive-force theory of slender bodies in viscosity gradients. J. Fluid Mech. 963, A24.CrossRefGoogle Scholar
Keller, S.R. & Wu, T.Y. 1977 A porous prolate-spheroidal model for ciliated micro-organisms. J. Fluid Mech. 80, 259278.CrossRefGoogle Scholar
Kim, S. & Karilla, S.J. 1991 Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann.Google Scholar
Lauga, E. 2016 Bacterial hydrodynamics. Annu. Rev. Fluid Mech. 48, 105130.CrossRefGoogle Scholar
Lauga, E. & Powers, T.R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601.CrossRefGoogle Scholar
Liebchen, B., Monderkamp, P., ten Hagen, B. & Löwen, H. 2018 Viscotaxis: microswimmer navigation in viscosity gradients. Phys. Rev. Lett. 120, 208002.CrossRefGoogle ScholarPubMed
Lighthill, M.J. 1952 On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun. Pure Appl. Math. 5, 109118.CrossRefGoogle Scholar
Martínez-Calvo, A., Trenado-Yuste, C. & Datta, S.S. 2023 Active transport in complex environments. In Out-of-Equilibrium Soft Matter (ed. C. Kurzthaler, L. Gentile & H.A. Stone), pp. 151–218. The Royal Society of Chemistry.CrossRefGoogle Scholar
Nasouri, B., Vilfan, A. & Golestanian, R. 2021 Minimum dissipation theorem for microswimmers. Phys. Rev. Lett. 126, 034503.CrossRefGoogle ScholarPubMed
Nganguia, H., Pietrzyk, K. & Pak, O.S. 2017 Swimming efficiency in a shear-thinning fluid. Phys. Rev. E 96, 062606.CrossRefGoogle Scholar
Pak, O.S. & Lauga, E. 2014 Generalized squirming motion of a sphere. J. Engng Maths 88, 128.CrossRefGoogle Scholar
Petrino, M.G. & Doetsch, R.N. 1978 ‘Viscotaxis’, a new behavioural response of Leptospira interrogans (biflexa) strain B16. J. Gen. Microbiol. 109, 113117.CrossRefGoogle ScholarPubMed
Pöhnl, R., Popescu, M.N. & Uspal, W.E. 2020 Axisymmetric spheroidal squirmers and self-diffusiophoretic particles. J. Phys. Condens. Matter 32, 164001.CrossRefGoogle ScholarPubMed
Qi, K., Annepu, H., Gompper, G. & Winkler, R.G. 2020 Rheotaxis of spheroidal squirmers in microchannel flow: interplay of shape, hydrodynamics, active stress, and thermal fluctuations. Phys. Rev. Res. 2, 033275.CrossRefGoogle Scholar
Shaik, V.A. & Elfring, G.J. 2021 Hydrodynamics of active particles in viscosity gradients. Phys. Rev. Fluids 6, 103103.CrossRefGoogle Scholar
Sherman, M.Y., Timkina, E.O. & Glagolev, A.N. 1982 Viscosity taxis in Escherichia coli. FEMS Microbiol. Lett. 13, 137140.CrossRefGoogle Scholar
Stehnach, M.R., Waisbord, N., Walkama, D.M. & Guasto, J.S. 2021 Viscophobic turning dictates microalgae transport in viscosity gradients. Nat. Phys. 17, 926930.CrossRefGoogle Scholar
Stocker, R. 2012 Marine microbes see a sea of gradients. Science 338, 628633.CrossRefGoogle Scholar
Stone, H.A. & Samuel, A.D.T. 1996 Propulsion of microorganisms by surface distortions. Phys. Rev. Lett. 77, 41024104.CrossRefGoogle ScholarPubMed
Swidsinski, A., Sydora, B.C., Doerffel, Y., Loening-Baucke, V., Vaneechoutte, M., Lupicki, M., Scholze, J., Lochs, H. & Dieleman, L.A. 2007 Viscosity gradient within the mucus layer determines the mucosal barrier function and the spatial organization of the intestinal microbiota. Inflamm. Bowel Dis. 13, 963970.CrossRefGoogle ScholarPubMed
Takabe, K., Tahara, H., Islam, M.S., Affroze, S., Kudo, S. & Nakamura, S. 2017 Viscosity-dependent variations in the cell shape and swimming manner of Leptospira. Microbiology 163, 153160.CrossRefGoogle ScholarPubMed
Theers, M., Westphal, E., Gompper, G. & Winkler, R.G. 2016 Modeling a spheroidal microswimmer and cooperative swimming in a narrow slit. Soft Matter 12, 73727385.CrossRefGoogle ScholarPubMed
Vogel, S. 1996 Life in Moving Fluids: The Physical Biology of Flow. Princeton University Press.Google Scholar
Wadhwa, N. & Berg, H.C. 2022 Bacterial motility: machinery and mechanisms. Nat. Rev. Microbiol. 20, 161173.CrossRefGoogle ScholarPubMed
Yeomans, J.M., Pushkin, D.O. & Shum, H. 2014 An introduction to the hydrodynamics of swimming microorganisms. Eur. Phys. J. Spec. Top. 223 (9), 17711785.CrossRefGoogle Scholar