Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T06:09:27.016Z Has data issue: false hasContentIssue false

ON THE DIVISIBILITY OF SUMS OF q-SUPER CATALAN NUMBERS

Published online by Cambridge University Press:  15 May 2023

JI-CAI LIU*
Affiliation:
Department of Mathematics, Wenzhou University, Wenzhou 325035, PR China
YAN-NI LI
Affiliation:
Department of Mathematics, Wenzhou University, Wenzhou 325035, PR China e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

The integrality of the numbers $A_{n,m}={(2n)!(2m)!}/{n!m!(n+m)!}$ was observed by Catalan as early as 1874 and Gessel named $A_{n,m}$ the super Catalan numbers. The positivity of the q-super Catalan numbers (q-analogue of the super Catalan numbers) was investigated by Warnaar and Zudilin [‘A q-rious positivity’, Aequationes Math. 81 (2011), 177–183]. We prove the divisibility of sums of q-super Catalan numbers, which establishes a q-analogue of Apagodu’s congruence involving super Catalan numbers.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction

The Catalan numbers, given by

$$ \begin{align*} C_n=\frac{1}{n+1}{2n\choose n},\quad n\ge 0, \end{align*} $$

occur in various counting problems. For instance, $C_n$ is the number of monotonic lattice paths along the edges of a grid with $n\times n$ square cells, which do not pass above the diagonal, and is also the number of permutations of $\{1,\ldots ,n\}$ that avoid the permutation pattern $123$ , that is, with no three-term increasing subsequence. We refer to [Reference Stanley12] for many different combinatorial interpretations of the Catalan numbers.

Although the Catalan numbers naturally arise in combinatorics, they also possess rich arithmetic properties. One of the remarkable examples is the following congruence due to Sun and Tauraso [Reference Sun and Tauraso13]:

(1.1) $$ \begin{align} &\sum_{k=0}^{p-1}C_k\equiv\frac{3}{2}\bigg(\frac{p}{3}\bigg)- \frac{1}{2}\pmod{p^2}. \end{align} $$

Here and in what follows, $p\ge 5$ is a prime and $(\frac{\cdot}{\cdot })$ denotes the Legendre symbol. We remark that Tauraso [Reference Tauraso14, Theorem 6.1] established an interesting q-analogue of the modulo p version of (1.1), which was further generalised to a q-analogue of the modulo $p^2$ version by the first author [Reference Liu9, Theorem 1].

In 1874, Catalan [Reference Catalan3] observed that the numbers $A_{n,m}={(2n)!(2m)!}/{n!m!(n+m)!}$ are always integral. Since $A_{n,1}/2$ coincides with the Catalan number $C_n$ , these $A_{n,m}$ were named the super Catalan numbers by Gessel [Reference Gessel6]. The integrality of $A_{n,m}$ can also be deduced from Von Szily’s identity [Reference Von Szily15]:

(1.2) $$ \begin{align} A_{n,m}=\sum_{k=-\infty}^{\infty}(-1)^k{2n\choose n+k}{2m\choose m+k}. \end{align} $$

There are interpretations of $A_{n,m}$ for some special values of m (see, for example, [Reference Allen and Gheorghiciuc1Reference Chen and Wang4Reference Pippenger and Schleich11]). However, it is still an open problem to find a general combinatorial interpretation for the super Catalan numbers.

In 2018, Apagodu [Reference Apagodu2, Conjecture 2] proposed two conjectural congruences on double sums of super Catalan numbers, one of which is

(1.3) $$ \begin{align} \sum_{i=0}^{p-1}\sum_{j=0}^{p-1}A_{i,j}\equiv \bigg(\frac{p}{3}\bigg)\pmod{p}. \end{align} $$

The first author [Reference Liu8] confirmed the conjectural congruence (1.3) using combinatorial identities which were proved by Zeilberger’s algorithm [Reference Petkovšek, Wilf and Zeilberger10].

It is natural to consider the q-counterpart for $A_{n,m}$ . The q-super Catalan numbers are defined as

$$ \begin{align*} A_{n,m}(q)=\frac{[2n]![2m]!}{[n]![m]![n+m]!}, \end{align*} $$

where the q-factorial $[n]!=\prod _{k=1}^n(1-q^k)/(1-q)$ . Warnaar and Zudilin [Reference Warnaar and Zudilin16] obtained the remarkable result that the $A_{n,m}(q)$ are polynomials with nonnegative coefficients (positive polynomials) and Guo et al. [Reference Guo, Jouhet and Zeng7] obtained another interesting positivity result related to $A_{n,m}(q)$ .

As mentioned in [Reference Warnaar and Zudilin16], one can obtain a q-analogue of Von Szily’s identity (1.2),

(1.4) $$ \begin{align} A_{n,m}(q)=\sum_{k=-\infty}^{\infty}(-1)^kq^{{k\choose 2}+k^2}{2n\brack n+k}{2m\brack m+k}, \end{align} $$

by taking $(a,b,c)\mapsto (1,\infty , q^{-m})$ in the very-well poised $_6\phi _5$ summation [Reference Gasper and Rahman5, (II.21)]. Here and throughout the paper, the q-binomial coefficients are defined as

$$ \begin{align*} {n\brack k} =\begin{cases} \displaystyle\frac{(q;q)_n}{(q;q)_k(q;q)_{n-k}} &\text{if }0\leqslant k\leqslant n,\\[10pt] 0 &\text{otherwise,} \end{cases} \end{align*} $$

where the q-shifted factorials are given by $(a;q)_n=(1-a)(1-aq)\cdots (1-aq^{n-1})$ for $n\ge 1$ and $(a;q)_0=1$ . The nth cyclotomic polynomial is given by

$$ \begin{align*} \Phi_n(q)=\prod_{\substack{1\le k \le n\\[3pt](n,k)=1}} (q-\zeta^k), \end{align*} $$

where $\zeta $ denotes a primitive nth root of unity.

Our interest concerns a q-analogue of Apagodu’s congruence (1.3) as follows.

Theorem 1.1. For any positive integer n, modulo $\Phi_n(q)$ ,

(1.5) $$ \begin{align} \sum_{i=0}^{n-1}\sum_{j=0}^{n-1}q^{i+j}A_{i,j}(q) \equiv \begin{cases} \displaystyle\bigg(\frac{n}{3}\bigg)q^{n-1}\quad&\text{if }n\not\equiv 0\pmod{3}\\ q^{n/3-1}(1-q^{n/3})\quad&\text{if }n\equiv 0\pmod{3}. \end{cases} \end{align} $$

We remark that letting $n=p$ and $q\to 1$ in (1.5) leads us to (1.3). The proof of (1.5) relies on (1.4) and the following q-congruence due to Tauraso [Reference Tauraso14, Corollary 4.3]:

(1.6) $$ \begin{align} \sum_{i=0}^{n-1}q^i{2i\brack i+k}\equiv \bigg(\frac{n-k}{3}\bigg)q^{3r(r+1)/2+k(2r+1)}\pmod{\Phi_n(q)}, \end{align} $$

where k is a nonnegative integer and $r=\lfloor 2(n-k)/3\rfloor $ .

As we will see, the proof of (1.5) is more natural than that of (1.3) in [Reference Liu8] and avoids using some exotic combinatorial identities. We shall present the proof of Theorem 1.1 in the next section.

2 Proof of Theorem 1.1

By (1.4),

(2.1) $$ \begin{align} \sum_{i=0}^{n-1}\sum_{j=0}^{n-1}q^{i+j}A_{i,j}(q) & =\sum_{i=0}^{n-1}\sum_{j=0}^{n-1}q^{i+j}\sum_{k=-j}^j(-1)^kq^{{k\choose 2}+k^2}{2j\brack \,j+k}{2i\brack i+k}\notag\\ &=\sum_{k=1-n}^{n-1}(-1)^kq^{{k\choose 2}+k^2}\sum_{i=0}^{n-1}q^i{2i\brack i+k}\sum_{j=0}^{n-1}q^{j}{2j\brack \,j+k}\notag\\ &=\sum_{k=1-n}^{n-1}(-1)^kq^{{k\choose 2}+k^2}\bigg(\sum_{i=0}^{n-1}q^i{2i\brack i+k}\bigg)^2. \end{align} $$

Let

$$ \begin{align*} a(k)=(-1)^kq^{{k\choose 2}+k^2}\bigg(\sum_{i=0}^{n-1}q^i{2i\brack i+k}\bigg)^2 \end{align*} $$

and

$$ \begin{align*} b(k)=a(-k)=(-1)^kq^{{k+1\choose 2}+k^2}\bigg(\sum_{i=0}^{n-1}q^i{2i\brack i+k}\bigg)^2. \end{align*} $$

We split the sum on the right-hand side of (2.1) into two pieces:

$$ \begin{align*} S_1=\sum_{k=0}^{n-1}a(k)\quad \text{and}\quad S_2=\sum_{k=1}^{n-1}b(k), \end{align*} $$

so that

(2.2) $$ \begin{align} &\sum_{i=0}^{n-1}\sum_{j=0}^{n-1}q^{i+j}A_{i,j}(q)=S_1+S_2. \end{align} $$

From (1.6), we deduce that

(2.3) $$ \begin{align} a(k)\equiv (-1)^kq^{{k\choose 2}+k^2}\bigg(\frac{n-k}{3}\bigg)^2q^{3r(r+1)+2k(2r+1)}\pmod{\Phi_n(q)} \end{align} $$

and

(2.4) $$ \begin{align} b(k)\equiv (-1)^kq^{{k+1\choose 2}+k^2}\bigg(\frac{n-k}{3}\bigg)^2q^{3r(r+1)+2k(2r+1)}\pmod{\Phi_n(q)}, \end{align} $$

where $r=\lfloor 2(n-k)/3\rfloor $ .

Next, we shall distinguish three cases to prove (1.5).

Case 1: $n\equiv 1\pmod {3}$ .

If $k=3m$ , then $ (({n-k})/{3})=1$ and $r=2(n-1)/3-2m$ . It follows from (2.3) and (2.4) that

(2.5) $$ \begin{align} a(k)\equiv (-1)^mq^{2(2n+1)(n-1)/3+3m(m-1)/2}\pmod{\Phi_n(q)} \end{align} $$

and

(2.6) $$ \begin{align} b(k)\equiv (-1)^mq^{2(2n+1)(n-1)/3+3m(m+1)/2}\pmod{\Phi_n(q)}. \end{align} $$

If $k=3m+1$ , then $ (({n-k})/{3})=0$ , and so

(2.7) $$ \begin{align} a(k)\equiv b(k)\equiv 0\pmod{\Phi_n(q)}. \end{align} $$

If $k=3m+2$ , then $ (({n-k})/{3})=-1$ and $r=2(n-1)/3-2m-1$ , and so

(2.8) $$ \begin{align} a(k)\equiv (-1)^mq^{2n(2n+1)/3+(m+1)(3m-2)/2} \pmod{\Phi_n(q)} \end{align} $$

and

(2.9) $$ \begin{align} b(k)\equiv (-1)^mq^{2n(2n+1)/3+(m+2)(3m+1)/2} \pmod{\Phi_n(q)}. \end{align} $$

Combining (2.5)–(2.9) gives modulo $\Phi_n(q)$ ,

(2.10) $$ \begin{align} a(k)\equiv \begin{cases} (-1)^mq^{2(2n+1)(n-1)/3+3m(m-1)/2}\quad &\text{if }k=3m \\ 0\quad &\text{if }k=3m+1\\ (-1)^mq^{2n(2n+1)/3+(m+1)(3m-2)/2}\quad &\text{if }k=3m+2 \end{cases} \end{align} $$

and

(2.11) $$ \begin{align} b(k)\equiv \begin{cases} (-1)^mq^{2(2n+1)(n-1)/3+3m(m+1)/2}\quad &\text{if }k=3m\\ 0\quad &\text{if }k=3m+1\\ (-1)^mq^{2n(2n+1)/3+(m+2)(3m+1)/2}\quad &\text{if }k=3m+2. \end{cases} \end{align} $$

It follows from (2.10) and (2.11) that

(2.12) $$ \begin{align} S_1=\sum_{k=0}^{n-1}a(k) &=\sum_{m=0}^{\lfloor (n-1)/3\rfloor}a(3m)+\sum_{m=0}^{\lfloor (n-2)/3\rfloor}a(3m+1)+\sum_{m=0}^{\lfloor (n-3)/3\rfloor}a(3m+2)\notag\\ &\equiv q^{2(2n+1)(n-1)/3}\sum_{m=0}^{ (n-1)/3}(-1)^mq^{3m(m-1)/2}\notag\\ &\quad +q^{2n(2n+1)/3}\sum_{m=0}^{ (n-4)/3}(-1)^mq^{(m+1)(3m-2)/2}\pmod{\Phi_n(q)} \end{align} $$

and

(2.13) $$ \begin{align} S_2=\sum_{k=1}^{n-1}b(k) &=\sum_{m=1}^{\lfloor (n-1)/3\rfloor}b(3m)+\sum_{m=0}^{\lfloor (n-2)/3\rfloor}b(3m+1)+\sum_{m=0}^{\lfloor (n-3)/3\rfloor}b(3m+2)\notag\\ &\equiv q^{2(2n+1)(n-1)/3}\sum_{m=1}^{ (n-1)/3}(-1)^mq^{3m(m+1)/2} \notag\\ &\quad +q^{2n(2n+1)/3}\sum_{m=0}^{ (n-4)/3}(-1)^mq^{(m+2)(3m+1)/2}\pmod{\Phi_n(q)}. \end{align} $$

Combining (2.2), (2.12) and (2.13), we arrive at

$$ \begin{align*} &\sum_{i=0}^{n-1}\sum_{j=0}^{n-1}q^{i+j}A_{i,j}(q)\\ &\quad\equiv q^{2(2n+1)(n-1)/3}\bigg(\sum_{m=0}^{ (n-1)/3}(-1)^mq^{3m(m-1)/2}+\sum_{m=1}^{ (n-1)/3}(-1)^mq^{3m(m+1)/2}\bigg)\\ &\qquad +q^{2n(2n+1)/3}\bigg(\sum_{m=0}^{ (n-4)/3}(-1)^mq^{(m+1)(3m-2)/2}+\sum_{m=0}^{ (n-4)/3}(-1)^mq^{(m+2)(3m+1)/2}\bigg) \pmod{\Phi_n(q)}. \end{align*} $$

Noting that

$$ \begin{align*} \sum_{m=0}^{ (n-1)/3}(-1)^mq^{3m(m-1)/2} =-\sum_{m=-1}^{ (n-4)/3}(-1)^mq^{3m(m+1)/2} \end{align*} $$

and

$$ \begin{align*} \sum_{m=0}^{ (n-4)/3}(-1)^mq^{(m+2)(3m+1)/2}= -\sum_{m=1}^{ (n-1)/3}(-1)^{m}q^{(m+1)(3m-2)/2}, \end{align*} $$

we obtain

$$ \begin{align*} \sum_{i=0}^{n-1}\sum_{j=0}^{n-1}q^{i+j}A_{i,j}(q) &\equiv q^{2n(2n+1)/3-1}-(-1)^{{(n-1)}/{3}}q^{(n+1)(3n-2)/2}+(-1)^{{(n-1)}/{3}}q^{(n-1)(3n+2)/2}\\ &=q^{2n(2n+1)/3-1}+(-1)^{(n-1)/3}q^{(n-1)(3n+2)/2}(1-q^n)\\ &\equiv q^{-1} \equiv q^{n-1} \pmod{\Phi_n(q)}, \end{align*} $$

where we have used the fact $q^n\equiv 1\pmod {\Phi _n(q)}$ . This completes the proof of the case $n\equiv 1\pmod {3}$ of (1.5).

Case 2: $n\equiv 2\pmod {3}$ .

By using the same method as in the previous case, we can evaluate $a(k)$ and $b(k)$ modulo $\Phi _n(q)$ :

$$ \begin{align*} a(k)\equiv \begin{cases} (-1)^mq^{2(2n-1)(n+1)/3+3m(m-1)/2}\quad &\text{if }k=3m\\ (-1)^{m+1}q^{2n(2n-1)/3+(3m+2)(m-1)/2}\quad &\text{if }k=3m+1\\ 0\quad &\text{if }k=3m+2 \end{cases} \end{align*} $$

and

$$ \begin{align*} b(k)\equiv \begin{cases} (-1)^mq^{2(2n-1)(n+1)/3+3m(m+1)/2}\quad &\text{if }k=3m\\ (-1)^{m+1}q^{2n(2n-1)/3+(3m+5)m/2}\quad &\text{if }k=3m+1\\ 0\quad &\text{if }k=3m+2. \end{cases} \end{align*} $$

It follows that

$$ \begin{align*} S_1=\sum_{k=0}^{n-1}a(k) &=\sum_{m=0}^{\lfloor (n-1)/3\rfloor}a(3m)+\sum_{m=0}^{\lfloor (n-2)/3\rfloor}a(3m+1)+\sum_{m=0}^{\lfloor (n-3)/3\rfloor}a(3m+2)\\ &\equiv q^{2(2n-1)(n+1)/3}\sum_{m=0}^{ (n-2)/3}(-1)^mq^{3m(m-1)/2} \\ &\quad -q^{2n(2n-1)/3}\sum_{m=0}^{ (n-2)/3}(-1)^mq^{(3m+2)(m-1)/2}\pmod{\Phi_n(q)} \end{align*} $$

and

$$ \begin{align*} S_2=\sum_{k=1}^{n-1}b(k) &=\sum_{m=1}^{\lfloor (n-1)/3\rfloor}b(3m)+\sum_{m=0}^{\lfloor (n-2)/3\rfloor}b(3m+1)+\sum_{m=0}^{\lfloor (n-3)/3\rfloor}b(3m+2)\\ &\equiv q^{2(2n-1)(n+1)/3}\sum_{m=1}^{ (n-2)/3}(-1)^mq^{3m(m+1)/2} \\ &\quad -q^{2n(2n-1)/3}\sum_{m=0}^{ (n-2)/3}(-1)^mq^{(3m+5)m/2} \pmod{\Phi_n(q)}. \end{align*} $$

Thus,

(2.14) $$ \begin{align} &\sum_{i=0}^{n-1}\sum_{j=0}^{n-1}q^{i+j}A_{i,j}(q)=S_1+S_2\notag\\ &\quad\equiv q^{2(2n-1)(n+1)/3}\bigg(\sum_{m=0}^{ (n-2)/3}(-1)^mq^{3m(m-1)/2}+\sum_{m=1}^{ (n-2)/3}(-1)^mq^{3m(m+1)/2}\bigg)\notag\\ &\qquad-q^{2n(2n-1)/3}\bigg(\sum_{m=0}^{ (n-2)/3}(-1)^mq^{(3m+2)(m-1)/2}+\sum_{m=0}^{ (n-2)/3}(-1)^mq^{(3m+5)m/2}\bigg)\pmod{\Phi_n(q)}. \end{align} $$

Furthermore, note that

(2.15) $$ \begin{align} \sum_{m=0}^{ (n-2)/3}(-1)^mq^{3m(m-1)/2}=-\sum_{m=-1}^{ (n-5)/3}(-1)^mq^{3m(m+1)2} \end{align} $$

and

(2.16) $$ \begin{align} \sum_{m=0}^{ (n-2)/3}(-1)^mq^{(3m+2)(m-1)/2}= -\sum_{m=-1}^{ (n-5)/3}(-1)^mq^{(3m+5)m/2}. \end{align} $$

Combining (2.14)–(2.16) gives

$$ \begin{align*} \sum_{i=0}^{n-1}\sum_{j=0}^{n-1}q^{i+j}A_{i,j}(q) &\equiv (-1)^{(n-2)/3}q^{(n+1)(3n-2)/2}-q^{2n(2n-1)/3-1}-(-1)^{(n-2)/3}q^{(3n+2)(n-1)/2} \\ &=-q^{2n(2n-1)/3-1}+(-1)^{(n-2)/3}q^{(3n+2)(n-1)/2}(q^n-1) \\ &\equiv -q^{-1} \equiv -q^{n-1} \pmod{\Phi_n(q)}, \end{align*} $$

which is the case $n\equiv 2\pmod {3}$ of (1.5).

Case 3: $n\equiv 0\pmod {3}$ .

By using the same method as in the first case, we find that modulo $\Phi_n(q)$ ,

$$ \begin{align*} a(k) \equiv \begin{cases} 0\quad &\text{if }k=3m\\ (-1)^{m+1}q^{2n(2n+1)/3+(3m+2)(m-1)/2} \quad &\text{if }k=3m+1\\ (-1)^mq^{2n(2n-1)/3+(3m-2)(m+1)/2} \quad &\text{if }k=3m+2 \end{cases} \end{align*} $$

and

$$ \begin{align*} b(k)\equiv\begin{cases} 0\quad &\text{if }k=3m\\ (-1)^{m+1}q^{2n(2n+1)/3+m(3m+5)/2} \quad &\text{if }k=3m+1\\ (-1)^mq^{2n(2n-1)/3+(m+2)(3m+1)/2} \quad &\text{if }k=3m+2. \end{cases} \end{align*} $$

It follows that

$$ \begin{align*} S_1 =\sum_{k=0}^{n-1}a(k) &=\sum_{m=0}^{\lfloor (n-1)/3\rfloor}a(3m)+\sum_{m=0}^{\lfloor (n-2)/3\rfloor}a(3m+1)+\sum_{m=0}^{\lfloor (n-3)/3\rfloor}a(3m+2)\\ &\equiv q^{2n(2n-1)/3}\sum_{m=0}^{ (n-3)/3}(-1)^mq^{(3m-2)(m+1)/2} \\ &\quad -q^{2n(2n+1)/3}\sum_{m=0}^{ (n-3)/3}(-1)^mq^{(3m+2)(m-1)/2} \pmod{\Phi_n(q)} \end{align*} $$

and

$$ \begin{align*} S_2=\sum_{k=1}^{n-1}b(k) &=\sum_{m=1}^{\lfloor (n-1)/3\rfloor}b(3m)+\sum_{m=0}^{\lfloor (n-2)/3\rfloor}b(3m+1)+\sum_{m=0}^{\lfloor (n-3)/3\rfloor}b(3m+2)\\ &\equiv q^{2n(2n-1)/3}\sum_{m=0}^{ (n-3)/3}(-1)^mq^{(m+2)(3m+1)/2} \\ &\quad -q^{2n(2n+1)/3}\sum_{m=0}^{ (n-3)/3}(-1)^mq^{m(3m+5)/2} \pmod{\Phi_n(q)}. \end{align*} $$

Thus,

(2.17) $$ \begin{align} &\sum_{i=0}^{n-1}\sum_{j=0}^{n-1}q^{i+j}A_{i,j}(q) =S_1+S_2\notag\\ &\quad\equiv q^{2n(2n-1)/3}\bigg(\sum_{m=0}^{ (n-3)/3}(-1)^mq^{(3m-2)(m+1)/2}+\sum_{m=0}^{ (n-3)/3}(-1)^mq^{{(m+2)(3m+1)}/{2}}\bigg)\notag\\ &\qquad-q^{2n(2n+1)/3}\bigg(\sum_{m=0}^{ (n-3)/3}(-1)^mq^{(3m+2)(m-1)/2}+\sum_{m=0}^{ (n-3)/3}(-1)^mq^{{m(3m+5)}/{2}}\bigg) \pmod{\Phi_n(q)}. \end{align} $$

Furthermore, note that

(2.18) $$ \begin{align} \sum_{m=0}^{ (n-3)/3}(-1)^mq^{{(3m+2)(m-1)}/{2}}=-\sum_{m=-1}^{ (n-6)/3}(-1)^mq^{{m(3m+5)}/{2}} \end{align} $$

and

(2.19) $$ \begin{align} \sum_{m=0}^{ (n-3)/3}(-1)^mq^{{(3m-2)(m+1)}/{2}}= -\sum_{m=-1}^{ (n-6)/3}(-1)^mq^{{(3m+1)(m+2)}/{2}}. \end{align} $$

Finally, combining (2.17)–(2.19), we arrive at

$$ \begin{align*} \sum_{i=0}^{n-1} & \sum_{j=0}^{n-1}q^{i+j}A_{i,j}(q) \\ &\equiv q^{{2n(2n-1)}/{3}-1}-q^{{2n(2n+1)}/{3}-1}+(-1)^{{n}/{3}}q^{{(n+1)(3n-2)}/{2}} +(-1)^{{(n-3)}/{3}}q^{{(n-1)(3n+2)}/{2}}\\ &=q^{{n(4n-3)}/{3}+{n}/{3}-1}(1-q^{n+{n}/{3}})-(-1)^{{n}/{3}}q^{{(n-1)(3n+2)}/{2}}(1-q^n) \\ &\equiv q^{{n}/{3}-1}(1-q^{{n}/{3}}) \pmod{\Phi_n(q)}, \end{align*} $$

which confirms the case $n\equiv 0\pmod {3}$ of (1.5).

Footnotes

The first author was supported by the National Natural Science Foundation of China (grant 12171370).

References

Allen, E. and Gheorghiciuc, I., ‘A weighted interpretation for the super Catalan numbers’, J. Integer Seq. 17 (2014), Article no. 14.10.7.Google Scholar
Apagodu, M., ‘Elementary proof of congruences involving sum of binomial coefficients’, Int. J. Number Theory 14 (2018), 15471557.CrossRefGoogle Scholar
Catalan, E., ‘Question 1135’, Nouv. Ann. Math. 13 (1874), 207.Google Scholar
Chen, X. and Wang, J., ‘The super Catalan numbers $S\left(m,m+s\right)$ for $s\le 4$ ’, Preprint, 2012, arXiv:1208.4196.Google Scholar
Gasper, G. and Rahman, M., Basic Hypergeometric Series, 2nd edn, Encyclopedia of Mathematics and Its Applications, 96 (Cambridge University Press, Cambridge, 2004).CrossRefGoogle Scholar
Gessel, I., ‘Super ballot numbers’, J. Symbolic Comput. 14 (1992), 179194.CrossRefGoogle Scholar
Guo, V. J. W., Jouhet, F. and Zeng, J., ‘Factors of alternating sums of products of binomial and $q$ -binomial coefficients’, Acta Arith. 127 (2007), 1731.CrossRefGoogle Scholar
Liu, J.-C., ‘Congruences on sums of super Catalan numbers’, Results Math. 73 (2018), Article no. 140.CrossRefGoogle Scholar
Liu, J.-C., ‘On a congruence involving $q$ -Catalan numbers’, C. R. Math. Acad. Sci. Paris 358 (2020), 211215.CrossRefGoogle Scholar
Petkovšek, M., Wilf, H. S. and Zeilberger, D., $A=B$ (A.K. Peters, Wellesley, MA, 1996).Google Scholar
Pippenger, N. and Schleich, K., ‘Topological characteristics of random triangulated surfaces’, Random Structures Algorithms 28 (2006), 247288.CrossRefGoogle Scholar
Stanley, R. P., Enumerative Combinatorics, Vol. 2 (Cambridge University Press, Cambridge, 1999).CrossRefGoogle Scholar
Sun, Z.-W. and Tauraso, R., ‘On some new congruences for binomial coefficients’, Int. J. Number Theory 7 (2011), 645662.CrossRefGoogle Scholar
Tauraso, R., ‘ $q$ -Analogs of some congruences involving Catalan numbers’, Adv. Appl. Math. 48 (2012), 603614.CrossRefGoogle Scholar
Von Szily, K., ‘Üeber die Quadratsummen der Binomialcoefficienten’, Ungar. Ber. 12 (1894), 8491.Google Scholar
Warnaar, S. O. and Zudilin, W., ‘A $q$ -rious positivity’, Aequationes Math. 81 (2011), 177183.CrossRefGoogle Scholar