Hostname: page-component-f554764f5-68cz6 Total loading time: 0 Render date: 2025-04-22T19:49:01.351Z Has data issue: true hasContentIssue false

Introduction to special issue: loess environments: generation, transport, and deposition

Published online by Cambridge University Press:  27 September 2024

Shiling Yang*
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
Randall J. Schaetzl
Affiliation:
Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, MI 48823, USA
Thomas Stevens
Affiliation:
Department of Earth Sciences, Uppsala University, Villavägen 16, Uppsala, 75236, Sweden
*
Corresponding author: Shiling Yang; Email: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Preface
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Quaternary Research Center

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

Cui, J., Guo, L., Xiong, S., Yang, S., Wang, Y., Zhang, S., Sun, H., 2024. Soil organic carbon induces a decrease in erodibility of black soil with loess parent materials in northeast China. Quaternary Research 120, 8392.Google Scholar
Fu, Y., Guo, Z., Wang, G., 2024. Seasonality of C4 plant growth and carbonate precipitation in the Chinese Loess Plateau may cause positive carbon isotope anomalies in pedogenic carbonates. Quaternary Research 120, 7182.Google Scholar
Gu, Y., Lu, H., Wang, J., Zhang, H., Zhang, W., Liang, C., Wu, J., 2024. East Asian monsoon variations in the loess–desert transitional zone (northern China) during the past 14 ka and their comparison with TraCE21K simulation results. Quaternary Research 120, 5361.Google Scholar
Li, W., Jiang, W., Yang, S., Lin, J., Wang, Y., 2024. Holocene hydroclimate and dust activity, as reconstructed from the sediments of Lake Bayanchagan, on the northern margin of the East Asian summer monsoon. Quaternary Research 120, 6270.Google Scholar
Mason, J.A., Nater, E.A., Zanner, C.W., Bell, J.C., 1999. A new model of topographic effects on the distribution of loess. Geomorphology 28, 223236.Google Scholar
Schaetzl, R.J., 2024. Loess transportation surfaces in west-central Wisconsin, USA. Quaternary Research 120, 3652.Google Scholar
Skurzyński, J., Jary, Z., Fenn, K., Lehmkuhl, F., Raczyk, J., Stevens, T., Wieczorek, M., 2024. Implications of the geochemistry of L1LL1 (MIS2) loess in Poland for paleoenvironment and new normalizing values for loess-focused multi-elemental analyses. Quaternary Research 120, 1835.Google Scholar
Taratunina, N.A., Kurbanov, R.N., Rogov, V.V., Streletskaya, I.D., Yanina, T.A., Solodovnikov, D.A., Stevens, T., 2024. Cryogenic features and stages in Late Quaternary subaerial sediments of the Lower Volga region. Quaternary Research 120, 317.Google Scholar
Zhang, S., Yang, S., Xiong, S., Guo, L., Wang, Y., Huang, X., Sun, M., Ding, Z., 2024. Origin and depositional background of the Holocene black soil in northeast China: evidence from grain-size analysis and optically stimulated luminescence dating. Catena 239, 107963.Google Scholar