1 Introduction
The aim of this paper is to extend some results on Loewy lengths of centers of blocks obtained in [Reference Külshammer and Sambale9, Reference Otokita12]. In the following we will reuse some of the notation introduced in [Reference Külshammer and Sambale9]. In particular, $B$ is a block of a finite group $G$ with respect to an algebraically closed field $F$ of characteristic $p>0$ . Moreover, let $D$ be a defect group of $B$ . The second author has shown in [Reference Otokita12, Corollary 3.3] that the Loewy length of the center of $B$ is bounded by
where $\exp (D)$ is the exponent of $D$ . It was already known to Okuyama [Reference Okuyama10] that this bound is best possible if $D$ is cyclic. The first and the third author have given in [Reference Külshammer and Sambale9, Theorem 1] the optimal bound $LL(ZB)\leqslant LL(FD)$ for blocks with abelian defect groups. Our main result of the present paper establishes the following bound for blocks with nonabelian defect groups:
where $|D|=p^{d}$ . As a consequence we obtain
for all blocks with noncyclic defect groups. It can be seen that this bound is achieved whenever $B$ is nilpotent and $D\cong C_{p^{d-1}}\times C_{p}$ .
In the second part of the paper we show that $LL(ZB)$ depends more on $\exp (D)$ than on $|D|$ . We prove for instance that $LL(ZB)\leqslant d^{2}\exp (D)$ unless $d=0$ . Finally, we use the opportunity to improve a result of Willems [Reference Willems15] about blocks with uniserial center.
In addition to the notation used in the papers cited above, we introduce the following objects. Let $\operatorname{Cl}(G)$ be the set of conjugacy classes of $G$ . A $p$ -subgroup $P\leqslant G$ is called a defect group of $K\in \operatorname{Cl}(G)$ if $P$ is a Sylow $p$ -subgroup of $\operatorname{C}_{G}(x)$ for some $x\in K$ . Let $\operatorname{Cl}_{P}(G)$ be the set of conjugacy classes with defect group $P$ . Let $K^{+}:=\sum _{x\in K}x\in FG$ and
(here $\unlhd$ means that the subsets are ideals).
2 Results
We begin by restating a lemma of Passman [Reference Passman13, Lemma 2]. For the convenience of the reader we provide a (slightly easier) proof.
Lemma 1. Let $P$ be a central $p$ -subgroup of $G$ . Then $I_{{\leqslant}P}(G)\cdot JZFG=I_{{\leqslant}P}(G)\cdot JFP$ .
Proof. Let $K$ be a conjugacy class of $G$ with defect group $P$ , and let $x\in K$ . Then $P$ is the only Sylow $p$ -subgroup of $\operatorname{C}_{G}(x)$ , and the $p$ -factor $u$ of $x$ centralizes $x$ . Thus $u\in P$ . Hence $u$ is the $p$ -factor of every element in $K$ , and $K=uK^{\prime }$ where $K^{\prime }$ is a $p$ -regular conjugacy class of $G$ with defect group $P$ . This shows that $I:=I_{{\leqslant}P}(G)$ is a free $FP$ -module with the $p$ -regular class sums with defect group $P$ as an $FP$ -basis. The canonical epimorphism $\unicode[STIX]{x1D708}:FG\rightarrow F[G/P]$ maps $I$ into $I_{1}(G/P)\subseteq SF[G/P]$ (recall that $SF[G/P]$ is the socle of $F[G/P]$ ). Thus $\unicode[STIX]{x1D708}(I\cdot JZFG)\subseteq SF[G/P]\cdot JZF[G/P]=0$ . Hence $I\cdot JZFG\subseteq I\cdot JFP$ . The other inclusion is trivial.◻
Lemma 2. Let $P\leqslant G$ be a $p$ -subgroup of order $p^{n}$ . Then
(i) $I_{{\leqslant}P}(G)\cdot JZFG^{LL(F\operatorname{Z}(P))}\subseteq I_{{<}P}(G)$ .
(ii) $I_{{\leqslant}P}(G)\cdot JZFG^{(p^{n+1}-1)/(p-1)}=0$ .
Proof.
(i) Let $\operatorname{Br}_{P}:ZFG\rightarrow ZF\operatorname{C}_{G}(P)$ be the Brauer homomorphism. Since $\operatorname{Ker}(\operatorname{Br}_{P})\cap I_{{\leqslant}P}(G)=I_{{<}P}(G)$ , we need to show that $\operatorname{Br}_{P}(I_{{\leqslant}P}(G)\cdot JZFG^{LL(F\operatorname{Z}(P))})=0$ . By Lemma 1 we have
$$\begin{eqnarray}\displaystyle & & \displaystyle \operatorname{Br}_{P}(I_{{\leqslant}P}(G)\cdot JZFG^{LL(F\operatorname{Z}(P))})\nonumber\\ \displaystyle & & \displaystyle \quad \subseteq I_{{\leqslant}\operatorname{Z}(P)}(\operatorname{C}_{G}(P))\cdot JZF\operatorname{C}_{G}(P)^{LL(F\operatorname{Z}(P))}\nonumber\\ \displaystyle & & \displaystyle \quad =I_{{\leqslant}\operatorname{Z}(P)}(\operatorname{C}_{G}(P))\cdot JF\operatorname{Z}(P)^{LL(F\operatorname{Z}(P))}=0.\nonumber\end{eqnarray}$$(ii) We argue by induction on $n$ . The case $n=1$ follows from $I_{1}(G)\subseteq SFG$ . Now suppose that the claim holds for $n-1$ . Since $LL(F\operatorname{Z}(P))\leqslant |P|=p^{n}$ , (i) implies
$$\begin{eqnarray}\displaystyle I_{{\leqslant}P}(G)\cdot JZFG^{(p^{n+1}-1)/(p-1)} & = & \displaystyle I_{{\leqslant}P}(G)\cdot JZFG^{p^{n}}JZFG^{(p^{n}-1)/(p-1)}\nonumber\\ \displaystyle & \subseteq & \displaystyle I_{{<}P}(G)\cdot JZFG^{(p^{n}-1)/(p-1)}\nonumber\\ \displaystyle & = & \displaystyle \mathop{\sum }_{Q<P}I_{{\leqslant}Q}(G)\cdot JZFG^{(p^{n}-1)/(p-1)}=0.\qquad \nonumber\end{eqnarray}$$
Recall from [Reference Külshammer and Sambale9, Lemma 9] the following group
Note that $W_{p^{d}}$ is a central product of $C_{p^{d-2}}$ and an extraspecial group of order $p^{3}$ . Now we prove our main theorem which improves [Reference Külshammer and Sambale9, Theorem 12].
Theorem 3. Let $B$ be a block of $FG$ with nonabelian defect group $D$ of order $p^{d}$ . Then (at least) one of the following holds
(i) $LL(ZB)<3p^{d-2}$ .
(ii) $p\geqslant 5$ , $D\cong W_{p^{d}}$ and $LL(ZB)<4p^{d-2}$ .
In any case we have
Proof. By [Reference Külshammer and Sambale9, Proposition 15], we may assume that $p>2$ . Since $D$ is nonabelian, $|D:\operatorname{Z}(D)|\geqslant p^{2}$ and $LL(F\operatorname{Z}(D))\leqslant p^{d-2}$ . Let $Q$ be a maximal subgroup of $D$ . If $Q$ is cyclic, then $D\cong M_{p^{n}}$ (see [Reference Gorenstein4, Theorem 5.4.4]) and the claim follows from [Reference Külshammer and Sambale9, Proposition 10]. Hence, we may assume that $Q$ is not cyclic. Then $LL(F\operatorname{Z}(Q))\leqslant p^{d-2}+p-1$ . Now setting $\unicode[STIX]{x1D706}:=(p^{d-1}-1)/(p-1)$ it follows from Lemma 2 that
Since $2p^{d-2}+p-1+\unicode[STIX]{x1D706}\leqslant 4p^{d-2}$ , we are done in case $p\geqslant 5$ and $D\cong W_{p^{d}}$ . If $p=3$ and $D\cong W_{p^{d}}$ , then the claim follows from [Reference Külshammer and Sambale9, Lemma 11]. Now suppose that $D\not \cong W_{p^{d}}$ . If $\operatorname{Z}(D)$ is cyclic of order $p^{d-2}$ , then the claim follows from [Reference Külshammer and Sambale9, Lemma 9 and Proposition 10]. Hence, suppose that $\operatorname{Z}(D)$ is noncyclic or $|\operatorname{Z}(D)|<p^{d-2}$ . Then $d\geqslant 4$ and $LL(F\operatorname{Z}(D))\leqslant p^{d-3}+p-1$ . The arguments above give $LL(ZB)\leqslant p^{d-2}+p^{d-3}+2p-2+\unicode[STIX]{x1D706}$ , hence we are done whenever $p>3$ .
In the following we assume that $p=3$ . Here we have $LL(ZB)\leqslant 3^{d-2}+3^{d-3}+4+\frac{1}{2}(3^{d-1}-1)$ and it suffices to handle the case $d=4$ . By [Reference Otokita12, Theorem 3.2], there exists a nontrivial $B$ -subsection $(u,b)$ such that
where $\overline{b}$ is the unique block of $F\operatorname{C}_{G}(u)/\langle u\rangle$ dominated by $b$ . We may assume that $\overline{b}$ has defect group $\operatorname{C}_{D}(u)/\langle u\rangle$ (see [Reference Sambale14, Lemma 1.34]). If $u\notin \operatorname{Z}(D)$ , we obtain $LL(ZB)<|\!\operatorname{C}_{D}(u)|\leqslant 27$ as desired. Hence, let $u\in \operatorname{Z}(D)$ . Then $D/\langle u\rangle$ is not cyclic. Moreover, by our assumption on $\operatorname{Z}(D)$ , we have $|\langle u\rangle |=3$ . Now it follows from [Reference Külshammer and Sambale9, Theorem 1, Proposition 10 and Lemma 11] applied to $\overline{b}$ that
We do not expect that the bounds in Theorem 3 are sharp. In fact, we do not know if there are $p$ -blocks $B$ with nonabelian defect groups of order $p^{d}$ such that $p>2$ and $LL(ZB)>p^{d-2}$ . See also Proposition 7 below.
Corollary 4. Let $B$ be a block of $FG$ with noncyclic defect group of order $p^{d}$ . Then
Proof. By Theorem 3, we may assume that $B$ has abelian defect group $D$ . Then [Reference Külshammer and Sambale9, Theorem 1] implies $LL(ZB)\leqslant LL(FD)\leqslant p^{d-1}+p-1$ .◻
We are now in a position to generalize [Reference Külshammer and Sambale9, Corollary 16].
Corollary 5. Let $B$ be a block of $FG$ with defect group $D$ of order $p^{d}$ such that $LL(ZB)\geqslant \min \{p^{d-1},4p^{d-2}\}$ . Then one of the following holds
(i) $D$ is cyclic.
(ii) $D\cong C_{p^{d-1}}\times C_{p}$ .
(iii) $D\cong C_{2}\times C_{2}\times C_{2}$ and $B$ is nilpotent.
Proof. Again by Theorem 3 we may assume that $D$ is abelian. By [Reference Külshammer and Sambale9, Corollary 16], we may assume that $p>2$ . Suppose that $D$ is of type $(p^{a_{1}},\ldots ,p^{a_{s}})$ such that $s\geqslant 3$ . Then
This clearly leads to a contradiction. Therefore, $s\leqslant 2$ and the claim follows.◻
In case (i) of Corollary 5 it is known conversely that $LL(ZB)=(p^{d}-1)/l(B)+1>p^{d-1}$ (see [Reference Koshitani, Külshammer and Sambale7, Corollary 2.8]).
Our next result gives a more precise bound by invoking the exponent of a defect group.
Theorem 6. Let $B$ be a block of $FG$ with defect group $D$ of order $p^{d}>1$ and exponent $p^{e}$ . Then
In particular, $LL(ZB)\leqslant d^{2}p^{e}$ .
Proof. Let $\unicode[STIX]{x1D6FC}:=\lfloor d/e\rfloor$ . Let $P\leqslant D$ be abelian of order $p^{ie+j}$ with $0\leqslant i\leqslant \unicode[STIX]{x1D6FC}$ and $0\leqslant j<e$ . If $P$ has type $(p^{a_{1}},\ldots ,p^{a_{r}})$ , then $a_{i}\leqslant e$ for $i=1,\ldots ,r$ and
Arguing as in Theorem 3, we obtain
This proves the first claim. For the second claim we note that
unless $d\leqslant 3$ . In these small cases the claim follows from Theorem 3 and Corollary 4.◻
If $2e>d$ and $p$ is large, then the bound in Theorem 6 is approximately $dp^{e}$ . The groups of the form $G=D=C_{p^{e}}\times \cdots \times C_{p^{e}}$ show that there is no bound of the form $LL(ZB)\leqslant Cp^{e}$ where $C$ is an absolute constant. A more careful argumentation in the proof above gives the stronger (but opaque) bound
for nonabelian defect groups where $\unicode[STIX]{x1D6FC}:=\lfloor (d-1)/e\rfloor$ and $\unicode[STIX]{x1D6FD}:=\lfloor (d-2)/e\rfloor$ . We omit the details.
In the next result we compute the Loewy length for $d=e+1$ .
Proposition 7. Let $B$ be a block of $FG$ with nonabelian defect group of order $p^{d}$ and exponent $p^{d-1}$ . Then
and both bounds are optimal for every $d\geqslant 3$ .
Proof. Let $D$ be a defect group of $B$ . If $p>2$ , then $D\cong M_{p^{d}}$ (see [Reference Gorenstein4, Theorem 5.4.4]) and we have shown $LL(ZB)\leqslant p^{d-2}$ in [Reference Külshammer and Sambale9, Proposition 10]. Equality holds if and only if $B$ is nilpotent.
Therefore, we may assume $p=2$ in the following. The modular groups $M_{2^{d}}$ are still handled by [Reference Külshammer and Sambale9, Proposition 10]. Hence, it remains to consider the defect groups of maximal nilpotency class, i. e., $D\in \{D_{2^{d}},Q_{2^{d}},SD_{2^{d}}\}$ . By [Reference Külshammer and Sambale9, Proposition 10], we may assume that $d\geqslant 4$ . The isomorphism type of $ZB$ is uniquely determined by $D$ and the fusion system of $B$ (see [Reference Cabanes and Picaronny2]). The possible cases are listed in [Reference Sambale14, Theorem 8.1]. If $B$ is nilpotent, [Reference Külshammer and Sambale9, Proposition 8] gives $LL(ZB)=LL(ZFD)\leqslant LL(FD^{\prime })=2^{d-2}$ . Moreover, in the case $D\cong D_{2^{d}}$ and $l(B)=3$ we have $LL(ZB)\leqslant k(B)-l(B)+1=2^{d-2}+1$ by [Reference Otokita12, Proposition 2.2]. In the remaining cases we present $B$ by quivers with relations which were constructed originally by Erdmann [Reference Erdmann3]. We refer to [Reference Holm5, Appendix B]. Keep in mind that we need to consider only one quiver for each fusion system.
(i) $D\cong D_{2^{d}}$ , $l(B)=2$ :
$$\begin{eqnarray}ZB=\operatorname{span}\{1,\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE},\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE},\unicode[STIX]{x1D702}^{i}:i=1,\ldots ,2^{d-2}\}.\end{eqnarray}$$It follows that $JZB^{2}=\langle \unicode[STIX]{x1D702}^{2}\rangle$ and $LL(ZB)=2^{d-2}+1$ .(ii) $D\cong Q_{2^{d}}$ , $l(B)=2$ : Here [Reference Zimmermann16, Lemma 6] gives the isomorphism type of $ZB$ directly as a quotient of a polynomial ring
$$\begin{eqnarray}\displaystyle ZB & \cong & \displaystyle F[U,Y,S,T]/\!(Y^{2^{d-2}+1},U^{2}-Y^{2^{d-2}},S^{2},T^{2},SY,\nonumber\\ \displaystyle & & \displaystyle SU,ST,UY,UT,YT)\!.\nonumber\end{eqnarray}$$It follows that $JZB^{2}=(Y^{2})$ and again $LL(ZB)=2^{d-2}+1$ .(iii) $D\cong Q_{2^{d}}$ , $l(B)=3$ :
$$\begin{eqnarray}\displaystyle ZB & = & \displaystyle \operatorname{span}\{\!1,\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD},(\unicode[STIX]{x1D705}\unicode[STIX]{x1D706})^{i}+(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{i},\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}+\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF},(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2},(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}},\nonumber\\ \displaystyle & & \displaystyle (\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}:i=1,\ldots ,2^{d-2}-1\!\}\!.\nonumber\end{eqnarray}$$We compute$$\begin{eqnarray}\displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})^{2}=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}+(\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})^{2}=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}+\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D706}\unicode[STIX]{x1D6FD}=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}+(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})(\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})=\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}=\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D706}=\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}+\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF})=\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{3}=\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D706}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}=\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle \!\!\!\!\!\!\!\!((\unicode[STIX]{x1D705}\unicode[STIX]{x1D706})^{2^{d-2}-1}+(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}-1})(\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})=\unicode[STIX]{x1D705}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FE}+(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}+(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}+\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF})=\unicode[STIX]{x1D706}\unicode[STIX]{x1D705}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}=\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}=\unicode[STIX]{x1D705}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}=\unicode[STIX]{x1D706}\unicode[STIX]{x1D705}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D705}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}+\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF})^{2}=(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}+(\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF})^{2}=(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}=(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}+(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}+\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF})(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}+\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF})(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}=\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF}(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}=\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D705}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}+\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FF})(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}=\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D706}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}=\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}=(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2^{d-2}}(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}=\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D705}\unicode[STIX]{x1D702}(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}=\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}=0. & \displaystyle \nonumber\end{eqnarray}$$Hence, $JZB^{2}=\langle (\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2}+(\unicode[STIX]{x1D705}\unicode[STIX]{x1D706})^{2},(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}+(\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}\rangle$ and $JZB^{3}=\langle (\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{3}+(\unicode[STIX]{x1D705}\unicode[STIX]{x1D706})^{3}\rangle$ . This implies $LL(ZB)=2^{d-2}+1$ .(iv) $D\cong SD_{2^{d}}$ , $k(B)=2^{d-2}+3$ and $l(B)=2$ :
$$\begin{eqnarray}ZB=\operatorname{span}\{1,\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE},\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE},\unicode[STIX]{x1D702}^{i}:i=1,\ldots ,2^{d-2}\}.\end{eqnarray}$$As in (i) we obtain $JZB^{2}=\langle \unicode[STIX]{x1D702}^{2}\rangle$ and $LL(ZB)=2^{d-2}+1$ .(v) $D\cong SD_{2^{d}}$ , $k(B)=2^{d-2}+4$ and $l(B)=2$ :
$$\begin{eqnarray}\displaystyle ZB & = & \displaystyle \operatorname{span}\{\!1,\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD},\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE},(\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2},\unicode[STIX]{x1D702}^{i},\nonumber\\ \displaystyle & & \displaystyle \unicode[STIX]{x1D702}+\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}:i=2,\ldots ,2^{d-2}\!\}\!.\nonumber\end{eqnarray}$$Since $(\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}=\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FE}=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC})^{2}$ and $(\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD})^{2}=\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}=\unicode[STIX]{x1D702}^{2^{d-2}}$ , it follows that$$\begin{eqnarray}(\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD})^{2}=(\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}+(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC})^{2}+(\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD})^{2}=\unicode[STIX]{x1D702}^{2^{d-2}}.\end{eqnarray}$$Similarly,$$\begin{eqnarray}\displaystyle & \displaystyle (\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD})\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD})(\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD})\unicode[STIX]{x1D702}^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD})(\unicode[STIX]{x1D702}+\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC})=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle \unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}(\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle \unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D702}^{2}=\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D702}^{2}\unicode[STIX]{x1D6FE}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle \unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}(\unicode[STIX]{x1D702}+\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC})=\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}(\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}\unicode[STIX]{x1D6FC}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}(\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}\unicode[STIX]{x1D702}^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}(\unicode[STIX]{x1D702}+\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC})=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle \unicode[STIX]{x1D702}^{2}(\unicode[STIX]{x1D702}+\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC})=\unicode[STIX]{x1D702}^{3}, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D702}+\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FC})^{2}=\unicode[STIX]{x1D702}^{2}. & \displaystyle \nonumber\end{eqnarray}$$Consequently, $JZB^{2}=\langle \unicode[STIX]{x1D702}^{2}\rangle$ and $LL(ZB)=2^{d-2}+1$ .(vi) $D\cong SD_{2^{d}}$ , $l(B)=3$ :
$$\begin{eqnarray}\displaystyle ZB & = & \displaystyle \operatorname{span}\{\!1,(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{i}+(\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})^{i},\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705},(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}},(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2},\nonumber\\ \displaystyle & & \displaystyle \unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}:i=1,\ldots ,2^{d-2}-1\!\}.\nonumber\end{eqnarray}$$We compute$$\begin{eqnarray}\displaystyle & \displaystyle \!\!\!(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})((\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}-1}+(\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})^{2^{d-2}-1})=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}}+\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D706}\unicode[STIX]{x1D6FD}=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}}+\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})(\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})=\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}}=\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D706}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}=\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}\unicode[STIX]{x1D705}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FE}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}=\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}=\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}\unicode[STIX]{x1D705}\unicode[STIX]{x1D702}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2}=\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D706}+(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2}=(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}}+(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2}, & \displaystyle \nonumber\end{eqnarray}$$$$\begin{eqnarray}\displaystyle (\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}} & = & \displaystyle \unicode[STIX]{x1D705}\unicode[STIX]{x1D706}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE}(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}-1}\nonumber\\ \displaystyle & = & \displaystyle \unicode[STIX]{x1D705}\unicode[STIX]{x1D702}\unicode[STIX]{x1D6FE}(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}-1}=0,\nonumber\\ \displaystyle (\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2} & = & \displaystyle \unicode[STIX]{x1D706}(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}}\unicode[STIX]{x1D705}\nonumber\\ \displaystyle & = & \displaystyle \unicode[STIX]{x1D702}\unicode[STIX]{x1D6FE}(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}-1}\unicode[STIX]{x1D705}=0,\nonumber\end{eqnarray}$$$$\begin{eqnarray}\displaystyle (\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}+\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}=0, & & \displaystyle \nonumber\end{eqnarray}$$$$\begin{eqnarray}\displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}}(\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}} & = & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}}(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2}\nonumber\\ \displaystyle & = & \displaystyle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2^{d-2}}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}=0,\nonumber\end{eqnarray}$$$$\begin{eqnarray}\displaystyle & \displaystyle (\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2}(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2}=(\unicode[STIX]{x1D706}\unicode[STIX]{x1D705})^{2}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}=0, & \displaystyle \nonumber\\ \displaystyle & \displaystyle (\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702})^{2}=\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D706}\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}=\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D706}\unicode[STIX]{x1D705}\unicode[STIX]{x1D706}\unicode[STIX]{x1D705}\unicode[STIX]{x1D702}=0. & \displaystyle \nonumber\end{eqnarray}$$Hence, $JZB^{2}=\langle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{2}+(\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})^{2},(\unicode[STIX]{x1D705}\unicode[STIX]{x1D706})^{2}+\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D702}\rangle$ and $JZB^{3}=\langle (\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D6FE})^{3}+(\unicode[STIX]{x1D6FE}\unicode[STIX]{x1D6FD})^{3}\rangle$ . This implies $LL(ZB)=2^{d-2}+1$ . ◻
It is interesting to note the difference between even and odd primes in Proposition 7. For $p=2$ , non-nilpotent blocks give larger Loewy lengths while for $p>2$ the maximal Loewy length is only attained for nilpotent blocks.
Recall that a lower defect group of a block $B$ of $FG$ is a $p$ -subgroup $Q\leqslant G$ such that
In this case $Q$ is conjugate to a subgroup of a defect group $D$ of $B$ and conversely $D$ is also a lower defect group since $1_{B}\in I_{{\leqslant}D}(G)\setminus I_{{<}D}(G)$ . It is clear that in the proofs of Theorems 3 and 6 it suffices to sum over the lower defect groups of $B$ . In particular there exists a chain of lower defect groups $Q_{1}<\cdots <Q_{n}=D$ such that $LL(ZB)\leqslant \sum _{i=1}^{n}LL(F\operatorname{Z}(Q_{i}))$ . Unfortunately, it is hard to compute the lower defect groups of a given block.
The following proposition generalizes [Reference Willems15, Theorem 1.5].
Proposition 8. Let $B$ be a block of $FG$ . Then $ZB$ is uniserial if and only if $B$ is nilpotent with cyclic defect groups.
Proof. Suppose first that $ZB$ is uniserial. Then $ZB\cong F[X]/(X^{n})$ for some $n\in \mathbb{N}$ ; in particular, $ZB$ is a symmetric $F$ -algebra. Then [Reference Okuyama and Tsushima11, Theorems 3 and 5] implies that $B$ is nilpotent with abelian defect group $D$ . Thus, by a result of Broué and Puig [Reference Broué and Puig1] (see also [Reference Külshammer8]), $B$ is Morita equivalent to $FD$ ; in particular, $FD$ is also uniserial. Thus $D$ is cyclic.
Conversely, suppose that $B$ is nilpotent with cyclic defect group $D$ . Then the Broué–Puig result mentioned above implies that $B$ is Morita equivalent of $FD$ . Thus $ZB\cong ZFD=FD$ . Since $FD$ is uniserial, the result follows.◻
A similar proof shows that $ZB$ is isomorphic to the group algebra of the Klein four group over an algebraically closed field of characteristic $2$ if and only if $B$ is nilpotent with Klein four defect groups.