Hostname: page-component-669899f699-8p65j Total loading time: 0 Render date: 2025-04-30T21:10:00.657Z Has data issue: false hasContentIssue false

Waves and non-propagating modes in stratified MHD turbulence subject to a weak mean magnetic field

Published online by Cambridge University Press:  11 December 2024

A. Salhi*
Affiliation:
Faculty of Sciences of Tunis, Tunis El Manar University, 2092 El Manar, Tunisia
A. Khlifi
Affiliation:
LR99ES17, Materials, Organisation and Properties, Faculty of Sciences of Tunis, 2092 El Manar, Tunisia Preparatory Institute for Engineering Studies of Bizerte, University of Carthage, 7021 Bizerte, Tunisia
R. Marino
Affiliation:
CNRS, École Centrale de Lyon, INSA de Lyon, Université Claude Bernard Lyon 1, Laboratoire de Mécanique des Fluides et d'Acoustique, F-69134 Écully, France
F. Feraco
Affiliation:
CNRS, École Centrale de Lyon, INSA de Lyon, Université Claude Bernard Lyon 1, Laboratoire de Mécanique des Fluides et d'Acoustique, F-69134 Écully, France Dipartimento di Fisica, Università della Calabria, Rende I-87036, Italy
R. Foldes
Affiliation:
CNRS, École Centrale de Lyon, INSA de Lyon, Université Claude Bernard Lyon 1, Laboratoire de Mécanique des Fluides et d'Acoustique, F-69134 Écully, France
C. Cambon
Affiliation:
CNRS, École Centrale de Lyon, INSA de Lyon, Université Claude Bernard Lyon 1, Laboratoire de Mécanique des Fluides et d'Acoustique, F-69134 Écully, France
*
Email address for correspondence: [email protected]

Abstract

In this study we consider a freely decaying, stably stratified homogeneous magnetohydrodynamic turbulent plasma with a weak vertical background magnetic field ($\boldsymbol {B}_0=B_0\hat {\boldsymbol {z}}),$ aligned with the density gradient of strength $N$ (i.e. Brunt–Väisälä frequency). Both linear theory and direct numerical simulations (DNS) are used to analyse the flow dynamics for a Boussinesq fluid with unitary magnetic and thermal Prandtl numbers. We implemented a normal mode decomposition emphasizing different types of motions depending on whether both the Froude $F_r$ and Alfvén–Mach $M$ numbers are small or only $F_r$ is small but $M$ is finite. In the former case, there is a non-propagating (NP) mode and fast modes: Alfvén waves with frequency $\omega _a$ and magnetogravity waves with frequency $\omega _{ag}$. In the latter case, there are fast gravity waves with frequency $\omega _g$ and slow modes: NP mode and slow Alfvén waves. The numerical simulations carried out are started from initial isotropic conditions with zero initial magnetic and density fluctuations, so that the initial energy of the NP mode is strictly zero, for $0< B_0/(L_iN)\leqslant 0.12$ and a weak mean magnetic field ($B_0=0.2$ or $B_0=0.4),$ where $L_i$ denotes the isotropic integral length scale. The DNS results indicate a weak turbulence regime for which $F_r$ is small and $M$ is finite. It is found that the vertical magnetic energy as well as the energy of the NP mode are drastically reduced as $N$ increases, while there is instead a forward cascade even for the magnetic field. The contribution coming from the energy of fast (gravity) waves does not exceed $50\,\%,$ while that coming from the energy of the NP mode does not exceed $10\,\%.$ Vertical motions are more affected by the effect of stratification than by the effect of the mean magnetic field, while it is the opposite for horizontal motions. We show that the spectrum of slow (Alfvén) waves and fast (gravity) waves tends to follow the power law $k_\perp ^{-3}$ for a wide range of time, $3< t<20$. At high vertical (or horizontal) wavenumbers, the main contribution to total energy comes from the energy of slow Alfvén waves. At large and intermediate horizontal (or vertical) scales, the spectra of the energy of NP mode exhibit a flat shape.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alexakis, A. & Biferale, L. 2018 Cascades and transitions in turbulent flows. Phys. Rep. 767, 1101.CrossRefGoogle Scholar
Alexandrova, O., Carbone, V., Veltri, P. & Sorriso-Valvo, L. 2008 Small-scale energy cascade of the solar wind turbulence. Astrophys. J. 674 (2), 1153.CrossRefGoogle Scholar
Banerjee, R. & Jedamzik, K. 2004 Evolution of cosmic magnetic fields: from the very early Universe, to recombination, to the present. Phys. Rev. D 70 (12), 123003.CrossRefGoogle Scholar
Bartello, P. 1995 Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atmos. Sci. 52 (24), 44104428.2.0.CO;2>CrossRefGoogle Scholar
Bartello, P. & Tobias, S.M. 2013 Sensitivity of stratified turbulence to the buoyancy Reynolds number. J. Fluid Mech. 725, 122.CrossRefGoogle Scholar
Bellet, F., Godeferd, F.S., Scott, J.F. & Cambon, C. 2006 Wave turbulence in rapidly rotating flows. J. Fluid Mech. 562, 83121.CrossRefGoogle Scholar
Bigot, B., Galtier, S. & Politano, H. 2008 a Development of anisotropy in incompressible magnetohydrodynamic turbulence. Phys. Rev. E 78 (6), 066301.CrossRefGoogle ScholarPubMed
Bigot, B., Galtier, S. & Politano, H. 2008 b Energy decay laws in strongly anisotropic magnetohydrodynamic turbulence. Phys. Rev. Lett. 100 (7), 074502.CrossRefGoogle ScholarPubMed
Billant, P. & Chomaz, J.M. 2001 Self-similarity of strongly stratified inviscid flows. Phys. Fluids 13 (6), 16451651.CrossRefGoogle Scholar
Boldyrev, S. 2005 On the spectrum of magnetohydrodynamic turbulence. Astrophys. J. 626 (1), L37.CrossRefGoogle Scholar
Brethouwer, G., Billant, P., Lindborg, E. & Chomaz, J.M. 2007 Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech. 585, 343368.CrossRefGoogle Scholar
Briard, A. & Gomez, T. 2018 The decay of isotropic magnetohydrodynamics turbulence and the effects of cross-helicity. J. Plasma Phys. 84 (1), 905840110.CrossRefGoogle Scholar
de Bruyn Kops, S.M. & Riley, J.J. 2019 The effects of stable stratification on the decay of initially isotropic homogeneous turbulence. J. Fluid Mech. 860, 787821.CrossRefGoogle Scholar
Charney, J.G. 1948 On the scale of atmospheric motions. In The Atmosphere – a Challenge: The Science of Jule Gregory Charney, pp. 251–265. Springer.CrossRefGoogle Scholar
Charney, J.G. 1971 Geostrophic turbulence. J. Atmos. Sci. 28 (6), 10871095.2.0.CO;2>CrossRefGoogle Scholar
Chini, G.P., Michel, G., Julien, K., Rocha, C.B. & Colm-cille, P.C. 2022 Exploiting self-organized criticality in strongly stratified turbulence. J. Fluid Mech. 933, A22.CrossRefGoogle Scholar
Cho, J., Lazarian, A. & Vishniac, E.T. 2002 Simulations of magnetohydrodynamic turbulence in a strongly magnetized medium. Astrophys. J. 564 (1), 291301.CrossRefGoogle Scholar
Davidson, P.A. 2010 On the decay of Saffman turbulence subject to rotation, stratification or an imposed magnetic field. J. Fluid Mech. 663, 268292.CrossRefGoogle Scholar
Davidson, P.A. 2013 Turbulence in Rotating, Stratified and Electrically Conducting Fluids. Cambridge University Press.CrossRefGoogle Scholar
Dewan, E. 1997 Saturated-cascade similitude theory of gravity wave spectra. J. Geophys. Res.: Atmos. 102 (D25), 2979929817.CrossRefGoogle Scholar
Embid, P.F. & Majda, A.J. 1998 Low Froude number limiting dynamics for stably stratified flow with small or finite Rossby numbers. Geophys. Astrophys. Fluid Dyn. 87 (1–2), 150.CrossRefGoogle Scholar
Galtier, S. 2003 Weak inertial-wave turbulence theory. Phys. Rev. E 68 (1), 015301.CrossRefGoogle ScholarPubMed
Galtier, S., Nazarenko, S.V., Newell, A.C. & Pouquet, A. 2000 A weak turbulence theory for incompressible magnetohydrodynamics. J. Plasma Phys. 63 (5), 447488.CrossRefGoogle Scholar
Godeferd, F.S. & Cambon, C. 1994 Detailed investigation of energy transfers in homogeneous stratified turbulence. Phys. Fluids 6 (6), 20842100.CrossRefGoogle Scholar
Goldreich, P. & Sridhar, S. 1995 Toward a theory of interstellar turbulence. 2: strong alfvenic turbulence. Astrophys. J. 438, 763775.CrossRefGoogle Scholar
Grant, S.D.T., Jess, D.B., Zaqarashvili, T.V., Beck, C., Socas-Navarro, H., Aschwanden, M.J., Keys, P.H., Christian, D.J., Houston, S.J. & Hewitt, R.L. 2018 Alfvén wave dissipation in the solar chromosphere. Nat. Phys. 14 (5), 480483.CrossRefGoogle Scholar
Hague, A. & Erdélyi, R. 2016 Buoyancy-driven magnetohydrodynamic waves. Astrophys. J. 828 (2), 88.CrossRefGoogle Scholar
Hanazaki, H. & Hunt, J.C.R. 1996 Linear processes in unsteady stably stratified turbulence. J. Fluid Mech. 318, 303337.CrossRefGoogle Scholar
Herbert, C., Marino, R., Rosenberg, D. & Pouquet, A. 2016 Waves and vortices in the inverse cascade regime of stratified turbulence with or without rotation. J. Fluid Mech. 806, 165204.CrossRefGoogle Scholar
Herbert, C., Pouquet, A. & Marino, R. 2014 Restricted equilibrium and the energy cascade in rotating and stratified flows. J. Fluid Mech. 758, 374406.CrossRefGoogle Scholar
Iroshnikov, P.S. 1963 Turbulence of a conducting fluid in a strong magnetic field. Astron. Zh. 40, 742.Google Scholar
Kafiabad, H.A., Savva, M.A. & Vanneste, J. 2019 Diffusion of inertia-gravity waves by geostrophic turbulence. J. Fluid Mech. 869, R7.CrossRefGoogle Scholar
van Kan, A. & Alexakis, A. 2022 Energy cascades in rapidly rotating and stratified turbulence within elongated domains. J. Fluid Mech. 933, A11.CrossRefGoogle Scholar
Kimura, Y. & Herring, J.R. 2012 Energy spectra of stably stratified turbulence. J. Fluid Mech. 698, 1950.CrossRefGoogle Scholar
Kneer, F. & González, N.B. 2011 On acoustic and gravity waves in the solar photosphere and their energy transport. Astron. Astrophys. 532, A111.CrossRefGoogle Scholar
Kraichnan, R.H. 1965 Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids 8 (7), 13851387.CrossRefGoogle Scholar
Kurien, S., Smith, L. & Wingate, B. 2006 On the two-point correlation of potential vorticity in rotating and stratified turbulence. J. Fluid Mech. 555, 131140.CrossRefGoogle Scholar
Kurien, S., Wingate, B. & Taylor, M.A. 2008 Anisotropic constraints on energy distribution in rotating and stratified turbulence. Europhys. Lett. 84 (2), 24003.CrossRefGoogle Scholar
Leith, C.E. 1980 Nonlinear normal mode initialization and quasi-geostrophic theory. J. Atmos. Sci. 37 (5), 958968.2.0.CO;2>CrossRefGoogle Scholar
Lesur, G. & Longaretti, P.Y. 2007 Impact of dimensionless numbers on the efficiency of magnetorotational instability induced turbulent transport. Mon. Not. R. Astron. Soc. 378 (4), 14711480.CrossRefGoogle Scholar
Liechtenstein, L., Godeferd, F.S. & Cambon, C. 2005 Nonlinear formation of structures in rotating stratified turbulence. J. Turbul. 6 (6), N24.CrossRefGoogle Scholar
Lilly, D.K. 1989 Two-dimensional turbulence generated by energy sources at two scales. J. Atmos. Sci. 46 (13), 20262030.2.0.CO;2>CrossRefGoogle Scholar
Lindborg, E. 2006 The energy cascade in a strongly stratified fluid. J. Fluid Mech. 550, 207242.CrossRefGoogle Scholar
Lucarini, V., Blender, R., Herbert, C., Ragone, F., Pascale, S. & Wouters, J. 2014 Mathematical and physical ideas for climate science. Rev. Geophys. 52 (4), 809859.CrossRefGoogle Scholar
Maffioli, A. & Davidson, P.A. 2016 Dynamics of stratified turbulence decaying from a high buoyancy Reynolds number. J. Fluid Mech. 786, 210233.CrossRefGoogle Scholar
Maltrud, M.E. & Vallis, G.K. 1991 Energy spectra and coherent structures in forced two-dimensional and beta-plane turbulence. J. Fluid Mech. 228, 321342.Google Scholar
Marino, R., Rosenberg, D., Herbert, C. & Pouquet, A. 2015 Interplay of waves and eddies in rotating stratified turbulence and the link with kinetic-potential energy partition. Europhys. Lett. 112 (4), 49001.CrossRefGoogle Scholar
Marino, R. & Sorriso-Valvo, L. 2023 Scaling laws for the energy transfer in space plasma turbulence. Phys. Rep. 1006, 1144.CrossRefGoogle Scholar
Meyrand, R., Galtier, S. & Kiyani, K.H. 2016 Direct evidence of the transition from weak to strong magnetohydrodynamic turbulence. Phys. Rev. Lett. 116 (10), 105002.CrossRefGoogle ScholarPubMed
Moffatt, H.K. 1967 On the suppression of turbulence by a uniform magnetic field. J. Fluid Mech. 28, 571592.CrossRefGoogle Scholar
Müller, W.C., Biskamp, D. & Grappin, R. 2003 Statistical anisotropy of magnetohydrodynamic turbulence. Phys. Rev. E 67 (6), 066302.CrossRefGoogle ScholarPubMed
Nagashima, K., Löptien, B., Gizon, L., Birch, A.C., Cameron, R., Couvidat, S., Danilovic, S., Fleck, B. & Stein, R. 2014 Interpreting the helioseismic and magnetic imager (HMI) multi-height velocity measurements. Sol. Phys. 289, 34573481.CrossRefGoogle Scholar
Nastrom, G.D. & Gage, K.S. 1983 A first look at wavenumber spectra from GASP data. Tellus A 35 (5), 383388.CrossRefGoogle Scholar
Nazarenko, S. 2011 Wave Turbulence, vol. 825. Springer Science & Business Media.CrossRefGoogle Scholar
Pedlosky, J. 2013 Geophysical Fluid Dynamics. Springer Science & Business Media.Google Scholar
Portwood, G.D., de Bruyn Kops, S.M., Taylor, J.R., Salehipour, H. & Caulfield, C.P. 2016 Robust identification of dynamically distinct regions in stratified turbulence. J. Fluid Mech. 807, R2.CrossRefGoogle Scholar
Riley, J.J. & de Bruyn Kops, S.M. 2003 Dynamics of turbulence strongly influenced by buoyancy. Phys. Fluids 15( 7), 20472059.CrossRefGoogle Scholar
Sagaut, P. & Cambon, C. 2008 Homogeneous Turbulence Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Salhi, A., Baklouti, F.S., Godeferd, F., Lehner, T. & Cambon, C. 2017 Energy partition, scale by scale, in magnetic Archimedes Coriolis weak wave turbulence. Phys. Rev. E 95 (2), 023112.CrossRefGoogle ScholarPubMed
Salhi, A. & Cambon, C. 2023 Magneto-gravity-elliptic instability. J. Fluid Mech. 963, A9.CrossRefGoogle Scholar
Salhi, A., Jacobitz, F.G., Schneider, K. & Cambon, C. 2014 Nonlinear dynamics and anisotropic structure of rotating sheared turbulence. Phys. Rev. E 89 (1), 013020.CrossRefGoogle ScholarPubMed
Salhi, A., Lehner, T., Godeferd, F. & Cambon, C. 2012 Magnetized stratified rotating shear waves. Phys. Rev. E 85 (2), 026301.CrossRefGoogle ScholarPubMed
Scott, J.F. & Cambon, C. 2024 Evolution of weak, homogeneous turbulence with rotation and stratification. J. Fluid Mech. 979, A17.CrossRefGoogle Scholar
Shebalin, J.V., Matthaeus, W.H. & Montgomery, D. 1983 Anisotropy in MHD turbulence due to a mean magnetic field. J. Plasma Phys. 29 (3), 525547.CrossRefGoogle Scholar
Skoutnev, V.A. 2023 Critical balance and scaling of strongly stratified turbulence at low Prandtl number. J. Fluid Mech. 956, A7.CrossRefGoogle Scholar
Smith, L.M. & Waleffe, F. 2002 Generation of slow large scales in forced rotating stratified turbulence. J. Fluid Mech. 451, 145168.CrossRefGoogle Scholar
Smyth, W.D. & Moum, J.N. 2000 Length scales of turbulence in stably stratified mixing layers. Phys. Fluids 12 (6), 13271342.CrossRefGoogle Scholar
Spiegel, E.A. & Veronis, G. 1960 On the Boussinesq approximation for a compressible fluid. Astrophys. J. 131, 442.CrossRefGoogle Scholar
Sreenivasan, B. & Maurya, G. 2021 Evolution of forced magnetohydrodynamic waves in a stratified fluid. J. Fluid Mech. 922, A32.CrossRefGoogle Scholar
Staquet, C. & Godeferd, F.S. 1998 Statistical modelling and direct numerical simulations of decaying stably stratified turbulence. Part 1. Flow energetics. J. Fluid Mech. 360, 295340.CrossRefGoogle Scholar
Straus, T., Fleck, B., Jefferies, S.M., Cauzzi, G., McIntosh, S.W., Reardon, K., Severino, G. & Steffen, M. 2008 The energy flux of internal gravity waves in the lower solar atmosphere. Astrophys. J. 681 (2), L125.CrossRefGoogle Scholar
Sundar, S., Verma, M.K., Alexakis, A. & Chatterjee, A.G. 2017 Dynamic anisotropy in MHD turbulence induced by mean magnetic field. Phys. Plasmas 24 (2), 022304.CrossRefGoogle Scholar
TenBarge, J.M., Podesta, J.J., Klein, K.G. & Howes, G.G. 2012 Interpreting magnetic variance anisotropy measurements in the solar wind. Astrophys. J. 753 (2), 107.CrossRefGoogle Scholar
Vallgren, A. & Lindborg, E. 2010 Charney isotropy and equipartition in quasi-geostrophic turbulence. J. Fluid Mech. 656, 448457.CrossRefGoogle Scholar
Verma, M.K. 2004 Statistical theory of magnetohydrodynamic turbulence: recent results. Phys. Rep. 401 (5–6), 229380.CrossRefGoogle Scholar
Vigeesh, G., Jackiewicz, J. & Steiner, O. 2017 Internal gravity waves in the magnetized solar atmosphere. I. Magnetic field effects. Astrophys. J. 835 (2), 148.CrossRefGoogle Scholar
Vigeesh, G. & Roth, M. 2020 Synthetic observations of internal gravity waves in the solar atmosphere. Astron. Astrophys. 633, A140.CrossRefGoogle Scholar
Waite, M.L. 2013 Potential enstrophy in stratified turbulence. J. Fluid Mech. 722, R4.CrossRefGoogle Scholar
Waite, M.L. & Bartello, P. 2004 Stratified turbulence dominated by vortical motion. J. Fluid Mech. 517, 281308.CrossRefGoogle Scholar
Waite, M.L. & Richardson, N. 2023 Potential vorticity generation in breaking gravity waves. Atmosphere 14 (5), 881.CrossRefGoogle Scholar
Watanabe, T., Zheng, Y. & Nagata, K. 2022 The decay of stably stratified grid turbulence in a viscosity-affected stratified flow regime. J. Fluid Mech. 946, A29.CrossRefGoogle Scholar
Wiśniewska, A., Musielak, Z.E., Staiger, J. & Roth, M. 2016 Observational evidence for variations of the acoustic cutoff frequency with height in the solar atmosphere. Astrophys. J. Lett. 819 (2), L23.CrossRefGoogle Scholar
Zaqarashvili, T.V., Lomineishvili, S., Leitner, P., Hanslmeier, A., Gömöry, P. & Roth, M. 2021 Kink instability of triangular jets in the solar atmosphere. Astron. Astrophys. 649, A179.CrossRefGoogle Scholar
Zhou, Y. 2010 Renormalization group theory for fluid and plasma turbulence. Phys. Rep. 488 (1), 149.CrossRefGoogle Scholar