Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-30T20:09:29.275Z Has data issue: false hasContentIssue false

On a random search tree: asymptotic enumeration of vertices by distance from leaves – CORRIGENDUM

Published online by Cambridge University Press:  06 June 2022

Miklós Bóna*
Affiliation:
University of Florida
Boris Pittel*
Affiliation:
The Ohio State University
*
*Postal address: Department of Mathematics, 1400 Stadium Road, Gainesville, FL 32611-8105, USA. Email address: [email protected]
**Postal address: Department of Mathematics, 100 Math Tower, 231 W 18th Ave, Columbus, OH 43210, USA. Email address: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

We correct typographical errors in our original paper.

MSC classification

Type
Corrigendum
Copyright
© The Author(s) 2022. Published by Cambridge University Press on behalf of Applied Probability Trust

In our paper ‘On a random search tree: asymptotic enumeration of vertices by distance from leaves’ (Adv. Appl. Prob. 49 (2017), 850–876), there are a number of typographical errors in mathematical expressions. These errors typically involve calligraphic letters. Below we have listed the correct expressions, with references to the places where the errors occurred in the original paper.

  1. 1. Page 854, displayed equation (2.4):

    \begin{equation*}\mathcal H_n(\rho)=h_n(\rho)+\frac{1}{n}\sum_{j=0}^{n-1}\bigl(\mathcal H_j(\rho)+\mathcal H_{n-1-j}(\rho)\bigr),\quad n>1.\end{equation*}
    Same page, second displayed equation from the bottom:
    \begin{equation*}\mathcal M_j(x):=\sum_{n\ge 1}\Bbb E[\mathcal X_{n,j}]\,x^n=\frac{2^j}{j!}\biggl(\log\frac{1}{1-x}\biggr)^j,\quad j>0.\end{equation*}
  2. 2. Page 857, proof of Lemma 2.3, first displayed equation:

    \begin{equation*}\lim_{n\to\infty}n^{-1}\mathcal H_n(\rho)=\lim_{n\to\infty} n^{-1} \Bbb E\left[\sum_{v\in [n]}\rho^{R(v)}\right]=\lim_{n\to\infty}n^{-1}\sum_{k\le n-1}\rho^k\, \Bbb E_{n,k}.\end{equation*}
  3. 3. Page 860, first displayed equation in proof of Lemma 2.4:

    \begin{equation*}F(x,y)=\sum_{n\ge 0}y^n\Bbb E\left[x^{\mathcal V_{n,k}}\right],\quad \mathcal V_{0,k}:=0.\end{equation*}
    Displayed statement (2.15), last inequality: $>0$ .

    Next displayed equation, last expectation: $\Bbb E[x^{\mathcal V_{n-1-j,k}}]$ .

    Next line: $\mathcal V_{n,k}=0$ for $n\le k$ , $\mathcal V_{k+1,k}=1\ (\text{resp.\ } 0)$ with probability $2^k/(k+1)!$ (resp. $1-2^k/(k+1)!$ ), and for $n>k+1$ ,

    \begin{equation*}\Bbb E[x^{\mathcal V_{n,k}}]=\frac{1}{n}\sum_{j=0}^{n-1} \Bbb E[x^{\mathcal V_{j,k}}]\cdot\Bbb E[x^{\mathcal V_{n-1-j,k}}].\end{equation*}
  4. 4. Page 868, bottom line: $\mathcal B_k(x)=\mathcal B_{k-1}(x)-\mathcal B_{>k}(x)$ .

  5. 5. Page 869, Lemma 4.1 should read as follows:

Lemma 4.1 For all nonnegative integers k, the equalities

\begin{align*}\frac{d}{dx}\mathcal A_{k}(x)&=\frac{2}{1-x}\, \mathcal A_{k}(x)+\frac{d}{dx}\mathcal B_{k}(x),\\\frac{d}{dx}\mathcal B_{>k}(x)&=2\left(\frac{1}{1-x}-B_{\le k-1}(x)\right)\mathcal B_{>k-1}(x)\end{align*}

hold. Here $\{B_{\le t}(x)\}$ is the sequence determined by the recurrence (3.3), $B_{\le -1}(x):=0$ , and $\mathcal B_{> -1}(x)=\mathcal B_{\ge 0}(x)$ is the generating function of the expected numbers of leaves, that is,

\begin{equation*}\mathcal B_{>-1}(x)=\frac{x-1}{3}+\frac{1}{3(1-x)^2}.\end{equation*}

Consequently

\begin{equation*}f_k=2\int_0^1(1-x)\mathcal B_k(x)\,dx.\end{equation*}

  1. 6. Page 870, second displayed equation from the top:

    \begin{equation*}f_k=\lim_{x\uparrow 1}(1-x)^2\mathcal A_k(x)=\int_0^1(1-x)^2\frac{d}{dx}\mathcal B_k(x)\,dx=2\int_0^1(1-x)\mathcal B_k(x)\,dx.\end{equation*}
    Proof of Lemma 4.2, first displayed equation:
    \begin{align*}&\textbf{1}_{\{R(\text{root})=k\}}\mathcal L_n=\textbf{1}_{\{R(\text{root'})=k-1\}}\textbf{1}_{\{R(\text{root}^{\prime\prime})=k-1\}}\mathcal L_n\\&\quad + \textbf{1}_{\{R(\text{root'})=k-1\}}\textbf{1}_{\{R(\text{root}^{\prime\prime})>k-1\}}\mathcal L_n+\textbf{1}_{\{R(\text{root'})=k-1\}}\textbf{1}_{\{R(\text{root}^{\prime\prime})=k-1\}}\mathcal L_n\\ &\qquad\qquad\qquad =\textbf{1}_{\{R(\text{root'})=k-1\}}\textbf{1}_{\{R(\text{root}^{\prime\prime})=k-1\}}(\mathcal L'+\mathcal L^{\prime\prime})\\&\quad +\textbf{1}_{\{R(\text{root'})=k-1\}}\textbf{1}_{\{R(\text{root}^{\prime\prime})>k-1\}}\mathcal L'+\textbf{1}_{\{R(\text{root'})>k-1\}}\textbf{1}_{\{R(\text{root}^{\prime\prime})=k-1\}}\mathcal L^{\prime\prime}.\end{align*}
    The next line should read as follows: ‘… to the expectation of $\textbf{1}_{\{R(root)=k\}}\mathcal L_n$ conditional on the event “the vertex set of T’ is a given set J of j elements from $[n]\setminus \text{root}$ ” is….’ The bottom displayed equation should read as follows:
    \begin{equation*}\Bbb E[\textbf{1}_{\{R(\text{root)=k\}}}\mathcal L_n|J]=g_{j,k-1}p_{n-1-j,>k-1}+g_{n-1-j,>k-1} p_{j, \ge k-1}.\end{equation*}
  2. 7. Page 871, first displayed equation:

    \begin{equation*}g_{n,k}=\Bbb E[\textbf{1}_{\{R(\text{root})=k\}}\mathcal L_n]=\frac{1}{n}\sum_{j=0}^{n-1}g_{j,k-1} p_{n-1-j,\ge k-1},\end{equation*}
    The first line of the proof of Theorem 4.1 should read as follows: ‘Consider $\mathcal L_{n.k}/V_{n,k}$ , for instance.’

The third display in the proof of Theorem 4.1 should read as follows:

\begin{equation*}\Bbb E_3=\frac{1}{n(c_k+O(\varepsilon))}\Bbb E[\mathcal L_{n,k}\textbf{1}_{\{V_{n,k} \ge 0.03an\}}\textbf{1}_{\{V_{n,k}/n-c_k|\le \varepsilon\}}] \ldots\end{equation*}

The last line of page 871 should read as follows: ‘… Therefore, $\mathcal L_{n,k}/V_{n,k}\to f_k/c_k$ ….’

Competing interests

There were no competing interests to declare which arose during the preparation or publication process for this article.