Hostname: page-component-f554764f5-44mx8 Total loading time: 0 Render date: 2025-04-22T23:46:30.647Z Has data issue: false hasContentIssue false

Early Neolithic plant exploitation in north-western China: archaeobotanical evidence from Beiliu

Published online by Cambridge University Press:  10 December 2024

Hui Zhou
Affiliation:
Shaanxi Academy of Archaeology, Xi'an, P.R. China School of Cultural Heritage, Northwest University, Xi'an, P.R. China
Xiaoqing Wang*
Affiliation:
Institute of Archaeology, Chinese Academy of Social Sciences, Beijing, P.R. China
Zhijun Zhao*
Affiliation:
Institute of Cultural Heritage, Shandong University, Qingdao, P.R. China
*
*Authors for correspondence ✉ [email protected] & [email protected]
*Authors for correspondence ✉ [email protected] & [email protected]

Abstract

China was a centre for early plant domestication, millets in the north and rice in the south, with both crops then spreading widely. The Laoguantai Culture (c. 8000–7000 BP) of the middle Yellow River region encompasses a crucial stage in the transition from hunting and gathering to farming, yet its subsistence basis is poorly understood. The authors present archaeobotanical data from the site of Beiliu indicating that farmers exploited a variety of wild and cultivated plants. The predominance of broomcorn millet accords with other Neolithic cultures in northern China but the presence of rice—some of the earliest directly dated examples—opens questions about the integration of rice cultivation into local subsistence strategies.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Antiquity Publications Ltd

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

An, Zhimin. 1999. The origin and eastward spread of rice-planting culture of China. Wenwu (Cultural Relics) 2: 6370 (in Chinese).Google Scholar
Barton, L.W. 2009. Early food production in China's western loess plateau. Unpublished PhD dissertation, University of California, Davis.Google Scholar
Barton, L.W. et al. 2009. Agricultural origins and the isotopic identity of domestication in northern China. Proceedings of the National Academy of Sciences USA 106: 5523–28. https://doi.org/10.1073/pnas.0809960106CrossRefGoogle ScholarPubMed
Bellwood, P. 2005. First farmers: the origin of agricultural societies. London: Blackwell.Google Scholar
Bettinger, R.L., Barton, L. & Morgan, C.. 2010. The origins of food production in north China: a different kind of agricultural revolution. Evolutionary Anthropology: Issues News and Reviews 19: 921. https://doi.org/10.1002/evan.20236CrossRefGoogle Scholar
Bestel, Sheahan, Bao, Yingjian, Zhong, Hua, Chen, Xingcan & Liu, Li. 2018. Wild plant use and multi-cropping at the early Neolithic Zhuzhai site in the Middle Yellow River region, China. The Holocene 28: 195207. https://doi.org/10.1177/0959683617721328CrossRefGoogle Scholar
Crawford, G.W. 2006. East Asian plant domestication, in Stark, M.T. (ed.) Archaeology of Asia: 7795. Oxford: Blackwell. https://doi.org/10.1002/9780470774670.ch5CrossRefGoogle Scholar
Crawford, G.W. et al. 2013. A preliminary analysis on plant remains of the Yuezhuang site in Changqing District, Jinan City, Shandong Province. Jianghan Archaeology 127(2): 107–16 (in Chinese).Google Scholar
d'Alpoim Guedes, J., Jin, Guiyun & Kylebocinsky, R.. 2015. The impact of climate on the spread of rice to north-eastern China: a new look at the data from Shandong Province. PLoS ONE 10. https://doi.org/10.1371/journal.pone.0130430Google Scholar
Deng, Zhenhua & Gao, Yu. 2012. Analysis of the plant remains from the Bailigang site in Dengzhou, Henan. Nanfangwenwu (Cultural Relics in Southern China) 1: 156–63 (in Chinese).Google Scholar
Deng, Zhenhua et al. 2020. Assessing the occurrence and status of wheat in Late Neolithic central China: the importance of direct AMS radiocarbon dates from Xiazhai. Vegetation History and Archaeobotany 29: 6173. https://doi.org/10.1007/s00334-019-00732-7CrossRefGoogle ScholarPubMed
Feng, Shengwu. 1985. Origin of Chinese agriculture as viewed from Dadiwan cultural relics. Acta Geographica Sinica 40(3): 207–14 (in Chinese).Google Scholar
Fuller, D.Q. 2007. Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Annals of Botany 100: 903924. https://doi.org/10.1093/aob/mcm048CrossRefGoogle ScholarPubMed
Fuller, D.Q. et al. 2014a. Convergent evolution and parallelism in plant domestication revealed by an expanding archaeological record. Proceedings of the National Academy of Sciences USA 111: 6147–52. doi:10.1073/pnas.1308937110CrossRefGoogle Scholar
Fuller, D.Q., Stevens, C. & McClatchie, M.. 2014b. Routine activities, tertiary refuse and labor organization: social inferences from everyday archaeobotany, in Madella, M., Lancelotti, C. & Savard, M. (ed.) Ancient plants and people: contemporary trends in archaeobotany: 174217. Tucson: University of Arizona Press.Google Scholar
Higham, C. & Lu, Tracey L.-D.. 1998. The origins and dispersal of rice cultivation. Antiquity 72: 867–77. https://doi.org/10.1017/S0003598X00087500CrossRefGoogle Scholar
He, Keyang, Lu, Houyuan, Zhang, Jianping & Wang, Can. 2022. Holocene spatiotemporal millet agricultural patterns in northern China: a dataset of archaeobotanical macroremains. Earth System Science Data 14: 4777–91. https://doi.org/10.5194/essd-14-4777-2022CrossRefGoogle Scholar
Jiang, Leping & Liu, Li. 2006. New evidence for the origins of sedentism and rice domestication in the Lower Yangzi River, China. Antiquity 80: 355–61. https://doi.org/10.1017/S0003598X00093674CrossRefGoogle Scholar
Jin, Guiyun, Wu, Wenwan, Zhang, Hesi, Wang, Zebing & Wu, Xiaohong. 2014. 8000-year-old rice remains from the north edge of the Shandong Highlands, East China. Journal of Archaeological Science 51: 3442. https://doi.org/10.1016/j.jas.2013.01.007CrossRefGoogle Scholar
Li, Wei et al. 2020. Interdisciplinary study on dietary complexity in Central China during the Longshan period (4.5–3.8 kaBP): new isotopic evidence from Wadian and Haojiatai, Henan Province. The Holocene 31: 258–70. https://doi.org/10.1177/0959683620970252CrossRefGoogle Scholar
Li, Xiaoqiang, Dodson, John, Zhou, Xinjing, Zhang, Hongbin & Masutomoto, Ryo. 2007. Early cultivated wheat and broadening of agriculture in Neolithic China. The Holocene 17: 555–60. https://doi.org/10.1177/0959683607078978CrossRefGoogle Scholar
Liu, C.J. 2006. Identification report of botanical remains at Dadiwan site, in Gansu Provincial Institute of Cultural Relics and Archaeology (ed.) Dadiwan in Qin'an report on excavations at a Neolithic site: 914–16. Beijing: Cultural Relics (in Chinese).Google Scholar
Liu, Changjiang, Kong, Zhaochen & Lang, Shude. 2004. Exploring the environment of agricultural plant remains and human survival at Dadiwan site. Zhongyuan wenwu (Cultural Relics of Central China) 4: 2630 (in Chinese).Google Scholar
Liu, Li et al. 2010. The exploitation of acorn and rice in Early Holocene Lower Yangzi River, China. Acta Anthropologica Sinica 29(3): 317–36 (in Chinese).Google Scholar
Liu, Li et al. 2011. Plant exploitation of the last foragers at Shizitan in the Middle Yellow River Valley China: evidence from grinding stones. Journal of Archaeological Science 38: 3524–32. https://doi.org/10.1016/j.jas.2011.08.015CrossRefGoogle Scholar
Liu, Li & Chen, Xingcan. 2012. The archaeology of China from the late Paleolithic to the Early Bronze Age. Beijing: SDX Joint Publishing Company.CrossRefGoogle Scholar
Lu, Houyuan & Zhang, Jianping. 2008. Neolithic cultural evolution and Holocene climate change in the Guanzhong Basin, Shaanxi, China. Quaternary Sciences 28(6): 1050–60.Google Scholar
Lu, Houyuan et al. 2009. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proceedings of the National Academy of Sciences USA 106: 7367–72. https://doi.org/10.1073/pnas.0900158106CrossRefGoogle ScholarPubMed
Pearsall, D.M. 2015. Paleoethnobotany: a handbook of procedures. Third edition. Walnut Creek (CA): Left Coast.Google Scholar
Qin, Ling. 2012. Phytoarchaeological research and perspectives on the origin of Chinese agriculture. A Collection of Studies on Archaeology: 260315 (in Chinese).Google Scholar
Reimer, P.J. et al. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62: 725–57. https://doi.org/10.1017/RDC.2020.41CrossRefGoogle Scholar
Ren, Shinan. 1995. Important results regarding Neolithic cultures in China earlier than 5000 B.C. Kaogu (Archaeology) 1: 3749 (in Chinese).Google Scholar
Shelach-Lavi, G. et al. 2019. Sedentism and plant cultivation in northeast China emerged during affluent conditions. PLoS ONE 14. https://doi.org/10.1371/journal.pone.0218751CrossRefGoogle ScholarPubMed
Smith, B.D. 2001. Low-level food production. Journal of Archaeological Research 9: 143. https://doi.org/10.1023/A:1009436110049CrossRefGoogle Scholar
Smith, B.D. 2006. Documenting domesticated plants in the archaeological record, in Zeder, M.A., Bradley, D.G., Emshwiller, E. & Smith, B.D. (ed.) Documenting domestication: new genetic and archaeological paradigms: 1524. Berkeley: University of California Press.Google Scholar
Stevens, C.J. & Fuller, D.Q.. 2017. The spread of agriculture in eastern Asia. Language Dynamics and Change 7(2): 152–86. https://doi.org/10.1163/22105832-00702001CrossRefGoogle Scholar
Stevens, C.J. et al. 2021. A model for the domestication of Panicum miliaceum (common, proso or broomcorn millet) in China. Vegetation History and Archaeobotany 30: 2133. https://doi.org/10.1007/s00334-020-00804-zCrossRefGoogle Scholar
Wang, Jiajing, Zhao, Xueye, Wang, Hui & Liu, Li. 2018. Plant exploitation of the first farmers in northwest China: microbotanical evidence from Dadiwan. Quaternary International 529: 39. https://doi.org/10.1016/j.quaint.2018.10.019CrossRefGoogle Scholar
Wu, Shichi. 1998. An introduction to the origin and development of primitive rice farming in China. Agricultural Archaeology 1: 8793 (in Chinese).Google Scholar
Xi'an, Banpo Museum et al. 1982. Brief report on investigation and trial excavation of Early Neolithic sites in Beiliu, Weinan. Kaogu Yu Wenwu (Archaeology and Cultural Relics) 4: 110 (in Chinese).Google Scholar
Xi'an, Banpo Museum et al. 1986. Brief report of the second and third excavations at Beilu site in Weinan. Prehistory Z1: 111–28 (in Chinese).Google Scholar
Yang, Xiaoyan et al. 2012. Early millet use in northern China. Proceedings of the National Academy of Sciences USA 109: 3726–30. https://doi.org/10.1073/pnas.1115430109CrossRefGoogle ScholarPubMed
Zhang, Chi. 2011. On the remains of the first stage of Jiahu Culture. Wenwu (Cultural Relics) 3: 4653 (in Chinese).Google Scholar
Zhang, Chi & Hung, Hsiao-chun. 2013. Jiahu 1: earliest farmers beyond the Yangtze River. Antiquity 87: 4663. https://doi.org/10.1017/S0003598X00048614Google Scholar
Zhang, Dongju et al. 2010. Archaeological records of Dadiwan in the past 60 ka and the origin of millet agriculture. Chinese Science Bulletin 55: 1636–42. https://doi.org/10.1007/s11434-010-3097-4CrossRefGoogle Scholar
Zhang, Hongyan. 2007. On the periodization and typology of the Laoguantai culture in the Weishui River valley. Acta Archaeologica Sinica 165(2): 153–78 (in Chinese).Google Scholar
Zhang, Jianping et al. 2012. Early mixed farming of millet and rice 7800 years ago in the middle Yellow River region, China. PLoS ONE 7. https://doi.org/10.1371/journal.pone.0052146Google ScholarPubMed
Zhang, Pengchuan & Lang, Shude. 1983. The main harvest from 1978 to 1982 excavations at the Dadiwan site in Qin'an, Gansu. Wenwu (Cultural Relics) 11: 2130 (in Chinese).Google Scholar
Zhang, Wenxu & Wang, Hui. 2000. A study of ancient rice cultivation at the relic site of Qingyang, Gansu Province. Agricultural Archaeology 3: 8085 (in Chinese).Google Scholar
Zhao, Zhijun. 2004. Flotation: a field technique of paleoethnobotany for recovering plant remains. Kaogu (Archaeology) 438(3): 8087 (in Chinese).Google Scholar
Zhao, Zhijun. 2005. Discussion of the Xinglonggou site flotation results and the origin of dry farming in northern China, in Department of Arts and Letters, Nanjing Normal University (ed.) Antiquities of eastern Asia A: 188–99. Beijing: Cultural Relics (in Chinese).Google Scholar
Zhao, Zhijun. 2010. New data and new issues for the study of origin of rice agriculture in China. Archaeological and Anthropological Sciences 2: 99105. https://doi.org/10.1007/s12520-010-0028-xCrossRefGoogle Scholar
Zhao, Zhijun. 2011. New archaeobotanic data for the study of the origins of agriculture in China. Current Anthropology 52: S295S306. https://doi.org/10.1086/659308CrossRefGoogle Scholar
Zhao, Zhijun. 2014. The process of origin of agriculture in China: archaeological evidence from flotation results. Quaternary Sciences 34(1): 7384 (in Chinese). https://doi/10.3969/j.issn.1001-7410.2014.10Google Scholar
Zhao, Zhijun. 2017. The development of agriculture in the time of Yangshao Culture and the establishment of agricultural society: an analysis on the flotation result of Yuhuazhai site. Jianghan Archaeology 153(6): 98108 (in Chinese).Google Scholar
Zhao, Zhijun & Zhang, Juzhong. 2009. Report on the analysis of the results of the 2001 floatation of the Jiahu site. Kaogu (Archaeology) 8: 8493 (in Chinese).Google Scholar
Zhao, Zhijun et al. 2020. Results of floatation and analysis of floral remains from Donghulin site, Beijing. Kaogu (Archaeology) 634(7): 99106 (in Chinese).Google Scholar
Zhong, Hua, Li, Zinwei, Wang, Weilin, Yang, Liping & Zhao, Zhijun. 2020. Preliminary research of the farming production pattern in the Central Plain area during the Miaodigou period. Quaternary Sciences 40(2): 472–85 (in Chinese). https://doi.org/10.11928/j.issn.1001-7410.2020.02.17Google Scholar
Supplementary material: File

Zhou et al. supplementary material

Zhou et al. supplementary material
Download Zhou et al. supplementary material(File)
File 4.9 MB