Hostname: page-component-669899f699-rg895 Total loading time: 0 Render date: 2025-04-24T12:00:38.727Z Has data issue: false hasContentIssue false

Characteristics and outcomes of patients with stent implantation for coronary artery lesions caused by Kawasaki disease – insights from second-generation stent implantation

Published online by Cambridge University Press:  30 October 2024

Natsuko Ishi
Affiliation:
Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan Department of Cardiology and Geriatrics, Kochi Medical School Hospital, Nangoku, Kochi, Japan
Etsuko Tsuda*
Affiliation:
Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
*
Corresponding author: E. Tsuda; E-mail: [email protected]

Abstract

Background:

Adult Kawasaki patients may require intervention for occlusive coronary artery disease. Some adverse effects of first-generation drug-eluting stent implantation with sirolimus have been reported in this population.

Methods:

A total of nine lesions in eight (seven males, one female) patients who underwent stent implantations in this population between 2000 and 2021 were reviewed.

Results:

The age at stent implantation ranged from 31 to 47 years, with a median of 37 years. There were six lesions treated by primary percutaneous transluminal coronary interventions, and three by elective procedures. A coronary aneurysm was found in two lesions, and coronary artery calcification was found in all culprit lesions. The numbers of everolimus-eluting stents, sirolimus-eluting stents and bare metal stents were six, two, and one, respectively. As anti- thrombotic therapy, aspirin, clopidogrel, and prasugrel were given to four, three, and one, respectively. Warfarin was given to five patients. The follow-up ranged from 2 to 12 years, with a median of 4 years. Follow-up angiograms were performed for eight lesions, at 2 to 38 months, with a median of 11 months. The patency of the target vessel was confirmed in all eight vessels. Slight malapposition, and peri-stent contrast staining were found in two lesions each.

Conclusion:

Acute coronary syndrome due to coronary artery lesions caused by Kawasaki disease occurred, even in lesions without any apparent coronary artery aneurysms. In our study, we show safe and efficacious placement of second-generation stent without adverse effects during the short-term follow-up, but long-term follow-up is needed to determine the efficacy and complication.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Tsuda, E, Abe, T, Tamaki, W. Acute coronary syndrome in adult patients with coronary artery lesions caused by Kawasaki disease: review of case reports. Cardiol Young 2011; 21: 7482.CrossRefGoogle ScholarPubMed
Gordon, JB, Daniels, LB, Kahn, AM et al. The spectrum of cardiovascular lesions requiring intervention in adults after Kawasaki disease. JACC Cardiovascular interventions 2016; 9: 687696.CrossRefGoogle ScholarPubMed
Tsuda, E, Matsuo, M, Naito, H, Noguchi, T, Nonogi, T, Echigo, S. Clinical features in adults with coronary arterial lesions caused by presumed Kawasaki disease. Cardiol Young 2007; 17: 8489.CrossRefGoogle ScholarPubMed
Tsuda, E, Noda, T, Noguchi, T. Two females with coronary artery occlusion caused by presumed Kawasaki disease would have delivered without recognition of ischemic heart disease. Cardiol Young 2020; 30: 785789.CrossRefGoogle Scholar
Anzai, F, Yoshihisa, A, Takeishi, R et al. Acute myocardial infarction caused by Kawasaki disease requires more intensive therapy: insights from the Japanese registry of all cardiac and vascular diseases – diagnosis procedure combination. Catheter Cardiovasc Interv 2022; 19.CrossRefGoogle Scholar
Tsuda, E. Intervention in adults after Kawasaki disease. JACC Cardiovasc Intervent 2016; 9: 697699.CrossRefGoogle ScholarPubMed
Tsuda, E. Insights into stent implantation for coronary artery lesions caused by Kawasaki disease. Cardiol Young 2020; 30: 911918.CrossRefGoogle ScholarPubMed
Motozawa, Y, Uozumi, H, Maemura, S et al. Acute myocardial infarction that resulted from poor adherence to medicaleatment for giant coronary aneurysm. The importance of patient education in the chronic phase of Kawasaki disease. Int Heart J 2005; 56: 551554.CrossRefGoogle Scholar
Tsuda, E, Hanatani, A, Kurosaki, K, Naito, H, Echigo, S. Two young adults who had acute coronary syndrome after regression of coronary aneurysms caused by Kawasaki disease in infancy. Pediatr Cardiol 2006; 27: 372375.CrossRefGoogle ScholarPubMed
Tsuda, E, Miyazaki, S, Yamada, O et al. Percutaneous transluminal coronary rotational atherectomy for localized stenosis caused by Kawasaki disease. Pediatr Cardiol 2006; 27: 447453.CrossRefGoogle ScholarPubMed
Dummer, KB, Miyata, K, Shimizu, C et al. DOACs in patients with giant coronary artery aneurysms after Kawasaki disease. JAMA Net Open 2023; 6 : e2343801. DOI: 10.1001.CrossRefGoogle ScholarPubMed
Tsuda, E, Tsujii, N, Kimura, K, Suzuki, A. Distribution of Kawasaki disease coronary aneurysms and the relationship to coronary artery diameter. Pediatr Cardiol 2017; 38: 932940.CrossRefGoogle ScholarPubMed
Sugiyama, T, Yamamoto, E, Fracassi, F et al. Calcified plaques in patients with acute coronary syndromes. JACC Cardiovasc Interv 2019; 12 ( 6 ): 531540.CrossRefGoogle ScholarPubMed
Li, SS, Cheng, BC, Lee, SH. Images in cardiovascular medicine. Giant coronary aneurysm formation after sirolimus-eluting stent implantation in Kawasaki disease. Circulation 2005; 112: e1057.CrossRefGoogle ScholarPubMed
Yoon, MJ, Lee, JY, Kim, SJ et al. Stent graft implantation for in-stent restenosis of coronary artery stenosis after Kawasaki disease. Int J Cardiol 2006; 113: 264266.CrossRefGoogle ScholarPubMed
Kim G.B.Hyo-Soo, C, Yun, J. Chronic total occlusion by stent fracture in Kawasaki disease: is recanalization possible? Cardio young 2012; 22: 232234.Google Scholar
Muto, M, Ishikawa, T. Percutaneous coronary intervention with retrograde approach for chronic total occlusion after Kawasaki disease. J Jpn Coron Assoc 2013; 19: 188192.CrossRefGoogle Scholar
Sawai, T, Tanigawa, T, Masuda, J et al. New coronary aneurysm formation malapposition after zotarolimus-eluting stent implantation in Kawasaki disease. J Cardiol Cases 2013; 8: 118120.CrossRefGoogle ScholarPubMed
Matsushita, K, Tamura, T, Nishiga, M et al. Acute myocardial infarction and 30-year coronary aneurysm follow-up by serial angiography in a young adult with Kawasaki disease. Cardiovasc Interv Ther 2015; 30: 142146.CrossRefGoogle Scholar
Steinberg, ZL, Jones, TK, Lombardi, WL. Novel percutaneous coronary intervention techniques for revascularizing chronically occluded giant coronary aneurysms in a patient with Kawasaki disease. Pediatr Cardiol 2016; 37: 13921395.CrossRefGoogle Scholar
Kurashima, S, Hiromasa, T, Jinnouchi, H, Domei, T, Shiraishi, S, Ando, K. Usefulness of rotational atherectomy with optical frequency domain imaging guidance for severe calcified coronary lesions after Kawasaki disease. Cardiovasc Interv Ther 2017; 32: 154158.Google Scholar
Takano, T, Ozaki, K, Hoyano, M, Yanagawa, T, Ozawa, T, Minamino, T. Stent malappsition occurred 17 days following percutaneous coronary intervention for a severe calcified lesion in acute myocardial infarction. J Cardiol Cases 2019, 20: 47.CrossRefGoogle ScholarPubMed
Okuno, S, Ishihara, T, Iida, O, Okamoto, S, Nanto, K, Mano, T. Satisfactory arterial healing after second-generation drug-eluting stent implantation for segmental stenosis in a patient with Kawasaki disease. Cardiovasc Interv Ther 2019; 34: 8384.CrossRefGoogle Scholar
Kimura, T, Morimoto, T, Natsuaki, M et al . Comparison of everolimus-eluting and sirolimus-eluting coronary stents. 1-year outcomes from the randomized evaluation of sirolimus-eluting versus everolimus-eluing stent trial (RESET) circulation. Circulation 2012; 126: 12251236.CrossRefGoogle Scholar
Fujiwara, T, Sakakura, K, Ako, J et al. Occurrence of late acquired peri-stent contrast staining. Comparison between sirolimus-eluting stents and everolimus-eluting stents. Int Heat J 2012; 53: 165169.CrossRefGoogle ScholarPubMed
Xing, L, Yamamto, E, Sugiyama, Tet al . EROSION study (Effective anti-thrombotic therapy without stenting: intravascular optical coherence tomogramphy-based management in plaque erosion) a 1-year follow-up report. Circ Cardiovasc Interv 2017; 10 : e005830.CrossRefGoogle ScholarPubMed