Hostname: page-component-669899f699-tzmfd Total loading time: 0 Render date: 2025-05-05T07:51:14.276Z Has data issue: false hasContentIssue false

Numerical simulation of an expanding magnetic field plasma thruster: a comparative study for argon, xenon and iodine fuel gases

Published online by Cambridge University Press:  26 September 2024

Vinod Saini*
Affiliation:
Institute For Plasma Research, Gandhinagar 382428, India
Rajaraman Ganesh
Affiliation:
Institute For Plasma Research, Gandhinagar 382428, India Homi Bhabha National Institute (HBNI), Mumbai, Maharashtra 400094, India
*
Email address for correspondence: [email protected]

Abstract

During a space mission, switching to an electric propulsion system from chemical propulsion, once the spacecraft is out of the Earth's gravity, significantly reduces the mission's overall cost. In electric propulsion, the Hall thruster and gridded ion thruster are established technologies. These thrusters compromise mission longevity due to continuous erosion of the device electrode material. To overcome this issue, an electrode less expanding magnetic field plasma thruster or helicon plasma thruster (HPT), was proposed and research is on going worldwide. The HPT shows scaling of thrust with input power while Hall thrusters and ion thrusters do not. Typically, an inert xenon gas is used as a fuel in HPT devices due to a low ionization potential and non-hazardous nature. Xenon is not easily available in nature and during a space mission it needs to be stored in high pressure tanks. Recently, iodine has been proposed as an alternate to xenon as it is easily available and does not have any storage issues. In most of the numerical simulations, argon is used as a fuel gas to reduce the simulation cost. Using a 1D3V particle-in-cell Monte Carlo collision code, we present here a net thrust generation for different fuel gases such as argon, xenon and iodine. We compare plasma flow rates and directed ion beam velocity for different fuel gases having identical inputs. Thrust and plasma flow are investigated for different magnetic field gradients in the plasma expansion region for unidirectional and bidirectional HPT and is reported here. Using iodine fuel, a significant increase in net thrust is obtained for higher magnetic field divergence for identical simulation input parameters while comparing with xenon fueled cases.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Baalrud, S.D., Lafleur, T., Boswell, R.W. & Charles, C. 2011 Particle-in-cell simulations of a current-free double layer. Phys. Plasma 18 (6), 063502.CrossRefGoogle Scholar
Bailey, J.E. 2001 Ullmann's Encyclopedia of Industrial Chemistry Fully Networkable Database. Wiley-VCH.Google Scholar
Bellomo, N., Magarotto, M., Manente, M. & Trezzolani, F. 2021 Design and in-orbit demonstration of REGULUS, an iodine electric propulsion system. CEAS Space J. 14 (1).Google Scholar
Birdsall, C.K. & Langdon, A.B. 1992 Plasma Physics via Computer Simulation. Institute of Physics.Google Scholar
Boris, J. 1970 In Proceeding of Fourth Conference on Numerical Simulation of Plasma (Naval Research Laboratory, Washington DC), p. 3.Google Scholar
Boswell, R.W., Takahashi, K., Charles, C. & Kaganovich, I.D. 2015 Non-local electron energy probability function in a plasma expanding along a magnetic nozzle. Front. Phys. 3, Article 14.CrossRefGoogle Scholar
Brewer, G. 1970 Ion Propulsion: Technology and Applications. Gordon and Breach.Google Scholar
Carbone, E., Graef, W., Hagelaar, G., Boer, D., Hopkins, M.M., Stephens, J.C., Yee, B.T., Pancheshnyi, S., van Dijk, J. & Pitchford, L. 2021 Data needs for modeling low-temperature non-equilibrium plasmas: the LXCat project, history, perspectives and a tutorial. Atoms 9 (1), 16.CrossRefGoogle Scholar
Cartwright, K.L., Verboncoeur, J.P. & Birdsall, C.K. 2000 Loading and injection of Maxwellian distributions in particle simulations. J. Comput. Phys. 162, 483-513.CrossRefGoogle Scholar
Charles, C. & Boswell, R. 2003 Current-free double-layer formation in a high-density helicon discharge. Appl. Phys. Lett. 82 (9).CrossRefGoogle Scholar
Chen, F.F. 1990 Introduction to Plasma Physics and Controlled Fusion, vol. 1, p. 329. Plenum.Google Scholar
Chen, F.F. 2006 Physical mechanism of current-free double layers. Phys. Plasmas 13, 034502.CrossRefGoogle Scholar
Ebersohn, F.H., Sheehan, J.P. & Gallimore, A.D. 2015 Quasi-one-dimensional particle-in-cell simulation of magnetic nozzles. In 34th International Electric Propulsion Conference, Japan, July 4–10.Google Scholar
Frignani, M. & Grasso, G. 2006 Argon cross sections for PIC-MCC codes. LIN-r01.Google Scholar
Fruchtman, A. 2006 Electric field in a double layer and the imparted momentum. Phys. Rev. Lett. 96, 065002.CrossRefGoogle Scholar
Goebel, D.M. & Katz, I. 2008 Fundamentals of Electric Propulsion: Ion and Hall Thrusters. John Wiley and Sons.CrossRefGoogle Scholar
Grondein, P., Lafleur, T., Chabert, P. & Aanesland, A. 2016 Global model of an iodine gridded plasma thruster. Phys. Plasmas 23 (3), 033514.CrossRefGoogle Scholar
Hamilton, J.R. 2015 Iodine: $I_{2}$ molecule and I atom. Tech. Rep. Quantemol.Google Scholar
Hockney, R.W. & Eastwood, J.W. 1981 Computer Simulation using Particles. McGraw-Hill.Google Scholar
Jackson, J.D. 1991 Classical Electrodynamics. Wiley.Google Scholar
Lucken, R., Marmuse, F., Bourdon, A., Chabert, P. & Tavant, A. 2019 Global model of a magnetized ion thruster with xenon and iodine. IEPC-2019-678.Google Scholar
Manente, M., Trezzolani, F., Magarotto, M., Fantino, E., Selmo, A., Bellomo, N., Toson, E. & Pavarin, D. 2019 REGULUS: a propulsion platform to boost small satellite missions. Acta Astronaut. 157, 241-249.CrossRefGoogle Scholar
Martinez Martinez, J., Rafalskyi, D. & Aanesland, A. 2018 Iodine a game-changing propellant for plasma based electric propulsion. In SP2018-501, 6th Space Propulsion Conference, Seville, Spain.Google Scholar
Mazouffre, S. 2016 Electric propulsion for satellites and spacecraft: established technologies and novel approaches. Plasma Sources Sci. Technol. 25, 033002.CrossRefGoogle Scholar
Meige, A., Boswell, R.W. & Charles, C. 2005 One-dimensional particle-in-cell simulation of a current-free double layer in an expanding plasma. Phys. Plasma 12, 052317.CrossRefGoogle Scholar
Qin, H., Zhang, S., Xiao, J., Liu, J., Sun, Y. & Tang, W.M. 2013 Why is Boris algorithm so good. Phys. Plasma 20, 084503.CrossRefGoogle Scholar
Rafalskyi, D., Martínez, J.M., Habl, L., et al. 2021 In-orbit demonstration of an iodine electric propulsion system. Nature 599, 411415.CrossRefGoogle ScholarPubMed
Saini, V. & Ganesh, R. 2020 Double layer formation and thrust generation in an expanding plasma using 1D-3 V PIC simulation. Phys. Plasmas 27, 093505.CrossRefGoogle Scholar
Saini, V. & Ganesh, R. 2022 Numerical simulation of a bi-directional plasma thruster for space debris removal. J. Plasma Phys. 88 (2), 905880203.CrossRefGoogle Scholar
Saini, V., Pandey, S.K., Trivedi, P. & Ganesh, R. 2018 Coherent phase space structures in a 1D electrostatic plasma using particle-in-cell and Vlasov simulations: a comparative study. Phys. Plasmas 25, 092107.CrossRefGoogle Scholar
Sakabe, S. & Izawa, Y. 1992 Simple formula for the cross sections of resonant charge transfer between atoms and their positive ions at low impact velocity. Phys. Rev. A 45 (3), 2086.CrossRefGoogle ScholarPubMed
Saloman, E.B. 2004 Energy levels and observed spectral lines of Xenon, Xe I through Xe LIV. J. Phys. Chem. Ref. Data 33 (3), 765921.CrossRefGoogle Scholar
Szabo, J.J., Pote, B., Paintal, S. & Robin, M. 2011 Performance evaluation of an iodine vapor hall thruster. J. Propul. Power 28 (4).Google Scholar
Szabo, J., Robin, M., Paintal, S., Pote, B., Hruby, V. & Freeman, C. 2015 Iodine plasma propulsion test results at 1–10 kW. IEEE Trans. Plasma Sci. 43 (1).CrossRefGoogle Scholar
Takahashi, K. 2019 Helicon-type radio-frequency plasma thrusters and magnetic plasma nozzles. Rev. Mod. Plasma Phys. 3, Article number:3.CrossRefGoogle Scholar
Takahashi, K., Charles, C., Boswell, R. & Ando, A. 2018 b Adiabatic expansion of electron gas in a magnetic nozzle. Phys. Rev. Lett. 120, 045001.CrossRefGoogle Scholar
Takahashi, K., Charles, C. & Boswell, R.W. 2013 a Approaching the theoretical limit of diamagnetic-induced momentum in a rapidly diverging magnetic nozzle. Phys. Rev. Lett. 110, 195003.CrossRefGoogle Scholar
Takahashi, K., Charles, C., Boswell, R.W. & Ando, A. 2013 b Performance improvement of a permanent magnet helicon plasma thruster. J. Phys. D: Appl. Phys. 46, 352001.CrossRefGoogle Scholar
Takahashi, K., Charles, C., Boswell, R.W. & Ando, A. 2018 a Demonstrating a new technology for space debris removal using a bi-directional plasma thruster. Sci. Rep. 8, 14417.CrossRefGoogle ScholarPubMed
Takahashi, K. 2021 Magnetic nozzle radiofrequency plasma thruster approaching twenty percent thruster efficiency. Sci. Rep. 11, 2768.CrossRefGoogle ScholarPubMed
Takahashi, K., Charles, C., Boswell, R.W. & Ando, A. 2020 Thermodynamic analogy for electrons interacting with a magnetic nozzle. Phys. Rev. Lett. 125, 165001.CrossRefGoogle ScholarPubMed
Takahashi, K., Lafleur, T., Charles, C., Alexander, P. & Boswell, R.W. 2011 Electron diamagnetic effect on axial force in an expanding plasma: experiments and theory. Phys. Rev. Lett. 107, 235001.CrossRefGoogle Scholar
Takahashi, K., Shida, Y. & Fujiwara, T. 2010 Magnetic-field-induced enhancement of ion beam energy in a magnetically expanding plasma using permanent magnets. Plasma Sources Sci. Technol. 19, 025004 (7pp).CrossRefGoogle Scholar
Takahashi, K., Sugawara, T. & Ando, A. 2020 Spatial measurement of axial and radial momentum fluxes of a plasma expanding in a magnetic nozzle. New J. Phys. 22, 073034.CrossRefGoogle Scholar
Takahashi, K., Takao, Y. & Ando, A. 2016 Modifications of plasma density profile and thrust by neutral injection in a helicon plasma thruster. Appl. Phys. Lett. 109, 194101.CrossRefGoogle Scholar
Takao, Y. & Takahashi, K. 2015 Numerical validation of axial plasma momentum lost to a lateral wall induced by neutral depletion. Phys. Plasmas 22, 113509.CrossRefGoogle Scholar
Tirila, V.-G., Demairé, A. & Ryan, C.N. 2023 Review of alternative propellants in Hall thrusters. Acta Astronaut. 212, 284-306.CrossRefGoogle Scholar
Vahedi, V. & Surendra, M. 1995 A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges. Comput. Phys. Commun. 87, 179.CrossRefGoogle Scholar
Verboncoeur, J.P., Alves, M.V., Vahedi, V. & Birdsall, C.K. 1993 Simultaneous potential and circuit solution for 1D bounded plasma particle simulation codes. J. Comput. Phys. 104, 321-328.CrossRefGoogle Scholar