Hostname: page-component-55f67697df-2mk96 Total loading time: 0 Render date: 2025-05-10T08:09:24.327Z Has data issue: false hasContentIssue false

The rigidity of filtered colimits of n-cluster tilting subcategories

Published online by Cambridge University Press:  06 February 2025

Ziba Fazelpour
Affiliation:
Department of Pure Mathematics, Faculty of Mathematics and Statistics, University of Isfahan, Tehran, Iran ([email protected])
Alireza Nasr-Isfahani
Affiliation:
Department of Pure Mathematics, Faculty of Mathematics and Statistics, University of Isfahan, Isfahan, Iran and School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran ([email protected])(corresponding author)

Abstract

Let Λ be an artin algebra and $\mathcal{M}$ be an n-cluster tilting subcategory of Λ-mod with $n \geq 2$. From the viewpoint of higher homological algebra, a question that naturally arose in Ebrahimi and Nasr-Isfahani (The completion of d-abelian categories. J. Algebra 645 (2024), 143–163) is when $\mathcal{M}$ induces an n-cluster tilting subcategory of Λ-Mod. In this article, we answer this question and explore its connection to Iyama’s question on the finiteness of n-cluster tilting subcategories of Λ-mod. In fact, our theorem reformulates Iyama’s question in terms of the vanishing of Ext and highlights its relation with the rigidity of filtered colimits of $\mathcal{M}$. Also, we show that ${\rm Add}(\mathcal{M})$ is an n-cluster tilting subcategory of Λ-Mod if and only if ${\rm Add}(\mathcal{M})$ is a maximal n-rigid subcategory of Λ-Mod if and only if $\lbrace X\in \Lambda-{\rm Mod}~|~ {\rm Ext}^i_{\Lambda}(\mathcal{M},X)=0 ~~~ {\rm for ~all}~ 0 \lt i \lt n \rbrace \subseteq {\rm Add}(\mathcal{M})$ if and only if $\mathcal{M}$ is of finite type if and only if ${\rm Ext}_{\Lambda}^1({\underrightarrow{\lim}}\mathcal{M}, {\underrightarrow{\lim}}\mathcal{M})=0$. Moreover, we present several equivalent conditions for Iyama’s question which shows the relation of Iyama’s question with different subjects in representation theory such as purity and covering theory.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Angeleri-Hugel, L.. Covers and envelopes via endoproperties of modules. Proc. Lond. Math. Soc. III. Ser. 86 (2003), 649665.CrossRefGoogle Scholar
Angeleri-Hugel, L., Herbera, D. and Trlifaj, J.. Baer and Mittag-Leffler modules over tame hereditary algebras. Math. Z. 265 (2010), 119.CrossRefGoogle Scholar
Auslander, M.. 1966. Coherent Functors. In: Eilenberg, S., Harrison, D.K., MacLane, S., Röhrl, H. (eds) Proceedings of the Conference on Categorical Algebra. Springer, Berlin, Heidelberg, 189231. 10.1007/978-3-642-99902-4_8Google Scholar
Auslander, M.. Representation theory of artin algebras II. Commun. Algebra 1 (1974), 269310.CrossRefGoogle Scholar
Auslander, M. and Reiten, I.. Applications of contravariantly finite subcategories. Adv. Math. 86 (1991), 111152.CrossRefGoogle Scholar
Auslander, M. and Smalø, S. O.. Almost split sequences in subcategories. J. Algebra 69 (1981), 426454.CrossRefGoogle Scholar
Azumaya, G.. Locally pure-projective modules. Contemp. Math. 124 (1992), 1722.CrossRefGoogle Scholar
Azumaya, G. and Facchini, A.. Rings of pure global dimension zero and Mittag-Leffler modules. J. Pure Appl. Algebra 62 (1989), 109122.CrossRefGoogle Scholar
Bazzoni, S. and Positselski, L.. Covers and direct limits: a contramodule-based approach. Math. Z. 299 (2021), 152.CrossRefGoogle Scholar
Beligiannis, A.. On algebras of finite Cohen-Macaulay type. Adv. Math. 226 (2011), 19732019.CrossRefGoogle Scholar
Beligiannis, A.. Relative homology, higher cluster-tilting theory and categorified Auslander-Iyama correspondence. J. Algebra 444 (2015), 367503.CrossRefGoogle Scholar
Crawley-Boevey, W.. Locally finitely presented additive categories. Commun. Algebra 22 (1994), 16411674.CrossRefGoogle Scholar
Del Rio, A.. Weak dimension of group-graded rings. Publ. Mat. Barc. 34 (1990), 209216.CrossRefGoogle Scholar
Diyanatnezhad, R. and Nasr-Isfahani, A.. Relations for Grothendieck groups of n-cluster tilting subcategories. J. Algebra 594 (2022), 5473.CrossRefGoogle Scholar
Diyanatnezhad, R. and Nasr-Isfahani, A.. The radical of functorially finite subcategories. J. Algebra 657 (2024), 675703.CrossRefGoogle Scholar
Ebrahimi, R. and Nasr-Isfahani, A.. Pure semisimple n-cluster tilting subcategories. J. Algebra 549 (2020), 177194.CrossRefGoogle Scholar
Ebrahimi, R. and Nasr-Isfahani, A.. The completion of d-abelian categories. J. Algebra 645 (2024), 143163.CrossRefGoogle Scholar
El Bashir, R.. Covers and directed colimits. Algebr. Represent. Theory 9 (2006), 423430.CrossRefGoogle Scholar
Enochs, E. E. and Jenda, O. M. G.. Relative homological algebra, de Gruyter Exp. Math., Vol. 30, (Walter de Gruyter and Co, Berlin, 2000).Google Scholar
Fazelpour, Z. and Nasr-Isfahani, A.. Morita equivalence and Morita duality for rings with local units and the subcategory of projective unitary modules. Appl. Categ. Struct. 32 (2024), .CrossRefGoogle Scholar
Fazelpour, Z. and Nasr-Isfahani, A.. Finiteness and purity of subcategories of the module categories, arXiv:2203.03294.Google Scholar
Fuller, K. R.. On rings whose left modules are direct sums of finitely generated modules. Proc. Am. Math. Soc. 54 (1976), 3944.CrossRefGoogle Scholar
Fuller, K. R. and Hullinger, H.. Rings with finiteness conditions and their categories of functors. J. Algebra 55 (1978), 94105.CrossRefGoogle Scholar
Gabriel, P.. Des catégories abéliennes. Bull. Soc. Math. Fr. 90 (1962), 323448.CrossRefGoogle Scholar
Garcia, J. L. and Simson, D.. On rings whose flat modules form a Grothendieck category. Colloq. Math. 73 (1997), 115141.CrossRefGoogle Scholar
Grothendieck, A.. Éléments de géométrie algébrique. III: Étude cohomologique des faisceaux cohérents. (Séconde partie). Rédigé avec la colloboration de J. Dieudonné. Publ. Math. Inst. Hautes Étud. Sci. 17 (1963), 137223.Google Scholar
Iyama, O.. Auslander correspondence. Adv. Math. 210 (2007), 5182.CrossRefGoogle Scholar
Iyama, O.. Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories. Adv. Math. 210 (2007), 2250.CrossRefGoogle Scholar
Iyama, O.. Auslander-Reiten theory revisited, Trends in representation theory of algebras and related topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, (2008), pp. 349397. MR 2484730, 10.4171/062-1/8Google Scholar
Jasso, G.. n-Abelian and n-exact categories. Math. Z. 283 (2016), 703759.CrossRefGoogle Scholar
Krause, H.. The spectrum of a module category. Mem. Am. Math. Soc. 707 (2001), .Google Scholar
Menini, C.. 1988. Gabriel - Popescu Type Theorems and Graded Modules. In: van Oystaeyen, F., Le Bruyn, L. (eds) Perspectives in Ring Theory. NATO ASI Series, Vol. 233. Springer, Dordrecht. 10.1007/978-94-009-2985-2_21CrossRefGoogle Scholar
Prest, M.. Purity, spectra and localisation, Encyclopedia of Mathematics and its Applications, Vol. 121, (Cambridge University Press, Cambridge, 2009).Google Scholar
Rada, J. and Saorin, M.. Rings characterized by (pre)envelopes and (pre)covers of their modules. Commun. Algebra 26 (1998), 899912.CrossRefGoogle Scholar
Raynaud, M. and Gruson, L.. Critères de platitude et de projectivité. Techniques de ‘platification’ d’un module. Invent. Math. 13 (1971), 189.CrossRefGoogle Scholar
Rothmaler, P.. Mittag-Leffler modules. Ann. Pure Appl. Logic. 88 (1997), 227239.CrossRefGoogle Scholar
Rotman, J.. An Introduction to Homological Algebra, 2nd edition (Springer, New York, 2009).CrossRefGoogle Scholar
Saroch, J. and Stovicek, J.. Singular compactness and definability for $\sum$-cotorsion and Gorenstein modules. Sel. Math. New Ser. 26 (2020), .CrossRefGoogle Scholar
Simson, D.. On pure global dimension of locally finitely presented Grothendieck categories. Fundam. Math. 96 (1977), 91116.CrossRefGoogle Scholar
Simson, D.. Pure semisimple categories and rings of finite representation type. J. Algebra 48 (1977), 290295.CrossRefGoogle Scholar
Simson, D.. Pure semisimple categories and rings of finite representation type, Corrigendum. J. Algebra 67 (1980), 254256.CrossRefGoogle Scholar
Wisbauer, R.. Foundations of Module and Ring Theory, A Handbook for Study and Research. Revised and translated from the 1988 German edition. Algebra, Logic and Applications, 3. Gordon and 3 (Gordon and Breach Science Publishers, Philadelphia, PA, 1991).Google Scholar
Yamagata, K.. On Morita duality for additive group valued functors. Commun. Algebra 7 (1979), 367392.CrossRefGoogle Scholar