Hostname: page-component-6587cd75c8-mppm8 Total loading time: 0 Render date: 2025-04-23T10:59:34.664Z Has data issue: false hasContentIssue false

Internet of Things and hybrid models-based interpretation systems for surface roughness estimation

Published online by Cambridge University Press:  12 November 2024

R. S. Umamaheswara Raju*
Affiliation:
Department of Mechanical Engineering, M V G R College of Engineering (A), Chitalavalasa, Vizianagaram, Andhra Pradesh, India
Ravi Kumar Kottala
Affiliation:
Department of Mechanical Engineering, M V G R College of Engineering (A), Chitalavalasa, Vizianagaram, Andhra Pradesh, India
B. Madhava Varma
Affiliation:
Department of Mechanical Engineering, M V G R College of Engineering (A), Chitalavalasa, Vizianagaram, Andhra Pradesh, India
Palla Krishna
Affiliation:
Department of Mechanical Engineering, M V G R College of Engineering (A), Chitalavalasa, Vizianagaram, Andhra Pradesh, India
Praveen Barmavatu
Affiliation:
Department of Mechanical Engineering, Faculty of Engineering, Universidad Tecnológica Metropolitana, Santiago, Chile
*
Corresponding author: R. S. Umamaheswara Raju; Email: [email protected]

Abstract

Face milling is performed on aluminum alloy A96061-T6 at diverse cutting parameters proposed by the design of experiments. Surface roughness is predicted by examining the effects of cutting parameters (CP), vibrations (Vib), and sound characteristics (SC). Sound characteristics based on surface roughness estimation determine the rarity of the work. In this study, a unique ANN-TLBO hybrid model (Artificial Neural Networks: Teaching Learning Based Algorithm) is created to predict the surface roughness from CP, Vib, and SC. To ascertain their correctness and efficacy in evaluating surface roughness, the performance of these models is evaluated. First off, the CP hybrid model demonstrated an amazing accuracy of 95.1%, demonstrating its capacity to offer trustworthy forecasts of surface roughness values. The Vib hybrid model, in addition, demonstrated a respectable accuracy of 85.4%. Although it was not as accurate as the CP model, it nevertheless showed promise in forecasting surface roughness. The SC-based hybrid model outperformed the other two models in terms of accuracy with a remarkable accuracy of 96.2%, making it the most trustworthy and efficient technique for assessing surface roughness in this investigation. An analysis of error percentages revealed the exceptional performance of SC-based Model-3, exhibiting an average error percentage of 3.77%. This outperformed Vib Model-2 (14.52%) and CP-based Model-1 (4.75%). The SC model is the best option, and given its outstanding accuracy, it may end up becoming the go-to technique for industrial applications needing accurate surface roughness measurement. The SC model’s exceptional performance highlights the importance of optimization strategies in improving the prediction capacities of ANN-based models, leading to significant advancements in the field of surface roughness assessment and related fields. An IoT platform is developed to link the model’s output with other systems. The system created eliminates the need for manual, physical surface roughness measurement and allows for the display of surface roughness data on the cloud and other platforms.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

This article was originally published with an incorrect affiliation for one author. The error has been corrected and the online HTML and PDF versions updated.

References

Abbas, AT, Pimenov, DY, Erdakov, IN, Mikolajczyk, T, Soliman, MS and El Rayes, MM (2019) Optimization of cutting conditions using artificial neural networks and the Edgeworth–Pareto method for CNC face-milling operations on high-strength grade-H steel. The International Journal of Advanced Manufacturing Technology, 105, 21512165. https://doi.org/10.1007/s00170-019-04327-4CrossRefGoogle Scholar
Anagün, Y, Işik, Ş and Çakir F, H (2023) Surface roughness classification of electro discharge machined surfaces with deep ensemble learning. Measurement 215, 112855. https://doi.org/10.1016/j.measurement.2023.112855CrossRefGoogle Scholar
Andrews, A, Manisekar, K and Rex, MT (2023) An expert system for vibration-based surface roughness prediction using firefly algorithm and LSTM network. Journal of the Brazilian Society of Mechanical Sciences and Engineering 45, 414. https://doi.org/10.1007/s40430-023-04341-4CrossRefGoogle Scholar
Asiltürk, İ, Kuntoğlu, M, Binali, R, Akkuş, H and Salur, E (2023) A comprehensive analysis of surface roughness, vibration, and acoustic emissions based on machine learning during hard turning of AISI 4140 steel. Metals 13(2), 437. https://doi.org/10.3390/met13020437CrossRefGoogle Scholar
Balasubramanian, KR, Ravi Kumar, K, Sathiya Prabhakaran, SP, Jinshah, BS and Abhishek, N (2022) Thermal degradation studies and hybrid neural network modelling of eutectic phase change material composites. International Journal of Energy Research. 46(11, 1573315755. https://doi.org/10.1002/er.8272CrossRefGoogle Scholar
Bhandari, B (2021) Comparative study of popular deep learning models for machining roughness classification using sound and force signals. Micromachines, 12(12), 1484. https://doi.org/10.3390/mi12121484CrossRefGoogle ScholarPubMed
Bhandari, B, Park, G, & Shafiabady, N (2023). Implementation of transformer-based deep learning architecture for the development of surface roughness classifier using sound and cutting force signals. Neural Computing and Applications, 35(18), 1327513292. https://doi.org/10.1007/s00521-023-08425-zCrossRefGoogle Scholar
Bhowmick, S, Mondal, R, Sarkar, S, Biswas, N, De, J, Majumdar, G (2023) Parametric optimization and prediction of MRR and surface roughness of titanium mixed EDM for Inconel 718 using RSM and fuzzy logic. CIRP Journal of Manufacturing Science and Technology. 40, 1028. https://doi.org/10.1016/j.cirpj.2022.11.002CrossRefGoogle Scholar
Buj-Corral, I, Sender, P, Luis-Pérez, CJ (2023) Modeling of surface roughness in Honing processes by using fuzzy artificial neural networks. Journal of Manufacturing and Materials Processing. 7(1), 23. https://doi.org/10.3390/jmmp7010023Google Scholar
Chebrolu, V, Koona, R, Raju, RS (2022) Automated evaluation of surface roughness using machine vision based intelligent systems. Journal of Scientific & Industrial Research. 82(1), 1125. http://op.niscpr.res.in/index.php/JSIR/article/view/69946Google Scholar
Eser, A, Aşkar Ayyıldız, E, Ayyıldız, M and Kara, F (2021) Artificial intelligence-based surface roughness estimation modelling for milling of AA6061 alloy. Advances in Materials Science and Engineering 2021, 110. https://doi.org/10.1155/2021/5576600Google Scholar
Feng, Y, Hsu, FC, Lu, YT, Lin, YF, Lin, CT, Lin, CF, Lu, YC, Lu, X, Liang, SY (2020) Surface roughness prediction in ultrasonic vibration-assisted milling. Journal of Advanced Mechanical Design, Systems, and Manufacturing. 14(4), JAMDSM0063. https://doi.org/10.1299/jamdsm.2020jamdsm0063CrossRefGoogle Scholar
Guleria, V, Kumar, V and Singh, PK (2022) Prediction of surface roughness in turning using vibration features selected by largest Lyapunov exponent based ICEEMDAN decomposition. Measurement 202, 111812. https://doi.org/10.1016/j.measurement.2022.111812CrossRefGoogle Scholar
Ho, WH, Tsai, JT, Lin, BT, Chou, JH (2009) Adaptive network-based fuzzy inference system for prediction of surface roughness in end milling process using hybrid Taguchi-genetic learning algorithm. Expert Systems with Applications 36(2), 32163222. https://doi.org/10.1016/j.eswa.2008.01.051CrossRefGoogle Scholar
Horňas, J, Běhal, J, Homola, P, Senck, S, Holzleitner, M, Godja, N, Pásztor, Z, Hegedüs, B, Doubrava, R, Růžek, R and Petrusová, L (2023) Modelling fatigue life prediction of additively manufactured Ti-6Al-4V samples using machine learning approach. International Journal of Fatigue, 169:107483. https://doi.org/10.1016/j.ijfatigue.2022.107483Google Scholar
Huang, PB, Inderawati, MMW, Rohmat, R (2023) The development of an ANN surface roughness prediction system of multiple materials in turning. The International Journal of Advanced Manufacturing Technology 125, 11931211. https://doi.org/10.1007/s00170-022-10709-yCrossRefGoogle Scholar
Kara, F, Bulan, N, Akgün, M and Köklü, U (2023) Multi-objective optimization of process parameters in milling of 17-4 PH stainless steel using taguchi-based gray relational analysis. Engineered Science, 26, 961. https://doi.org/10.30919/es961Google Scholar
Kara, F, Karabatak, M, Ayyıldız, M and Nas, E (2020) Effect of machinability, microstructure and hardness of deep cryogenic treatment in hard turning of AISI D2 steel with ceramic cuttingJournal of Materials Research and Technology9(1), 969983. https://doi.org/10.1016/j.jmrt.2019.11.037CrossRefGoogle Scholar
Kottala, RK, Chigilipalli, BK, Mukuloth, S, Shanmugam, R, Kantumuchu, VC, Ainapurapu, SB, Cheepu, M (2023) Thermal degradation studies and machine learning modelling of nano-enhanced sugar alcohol-based phase change materials for medium temperature applications. Energies. 16(5), 2187. https://doi.org/10.3390/en16052187CrossRefGoogle Scholar
Kottala, RK, Ramaraj, BK, BS, J, Vempally, MG, Lakshmanan, M (2022) Experimental investigation and neural network modeling of binary eutectic/expanded graphite composites for medium temperature thermal energy storage. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–24. https://doi.org/10.1080/15567036.2022.2043490CrossRefGoogle Scholar
Kumar, KR, Balasubramanian, KR, Kumar, GP, Bharat Kumar, C, Cheepu, MM (2022) Experimental investigation of nano-encapsulated molten salt for medium-temperature thermal storage systems and modeling of neural networks. International Journal of Thermophysics. 43(9), 145. https://doi.org/10.1007/s10765-022-03069-yCrossRefGoogle Scholar
Kundu, P, Luo, X, Qin, Y, Cai, Y and Liu, Z (2022) A machine learning-based framework for automatic identification of process and product fingerprints for smart manufacturing systems. Journal of Manufacturing Processes. 73, 128138. https://doi.org/10.1016/j.jmapro.2021.10.060Google Scholar
Li, S, Li, S., Liu, Z, & Vladimirovich, PA (2022) Roughness prediction model of milling noise-vibration-surface texture multi-dimensional feature fusion for N6 nickel metal. Journal of Manufacturing Processes, 79, 166176. https://doi.org/10.1016/j.jmapro.2022.04.055CrossRefGoogle Scholar
Lin, WJ, Lo, SH, Young, HT and Hung, CL (2019) Evaluation of deep learning neural networks for surface roughness prediction using vibration signal analysis. Applied Sciences, 9(7), 1462. https://doi.org/10.3390/app9071462CrossRefGoogle Scholar
Mikolajczyk, T and Olaru, A (2015) Some methods of research results approximation. Applied Mechanics and Materials, 783, 95103. https://doi.org/10.4028/www.scientific.net/amm.783.95CrossRefGoogle Scholar
Mikolajczyk, T (2014) Modeling of minimal thickness cutting layer influence on surface roughness in turning. Applied Mechanics and Materials, 656, 262269.https://doi.org/10.4028/www.scientific.net/AMM.656.262CrossRefGoogle Scholar
Mikolajczyk, T, Fuwen, H, Moldovan, L, Bustillo, A, Matuszewski, M and Nowicki, K (2018) Selection of machining parameters with Android application made using MIT App Inventor bookmarks. Procedia Manufacturing, 22, 172179. https://doi.org/10.1016/j.promfg.2018.03.027Google Scholar
Mikołajczyk, T, Latos, H, Pimenov, DY, Paczkowski, T, Gupta, MK and Krolczyk, G (2020) Influence of the main cutting edge angle value on minimum uncut chip thickness during turning of C45 steel. Journal of Manufacturing Processes, 57, 354362. https://doi.org/10.1016/j.jmapro.2020.06.040CrossRefGoogle Scholar
Nguyen, VH, Vuong, TH, and Nguyen, QT (2022) Feature representation of audible sound signal in monitoring surface roughness of the grinding process. Production & Manufacturing Research, 10(1), 606623. https://doi.org/10.1080/21693277.2022.2108927CrossRefGoogle Scholar
Raju, RU, Raju, VR, Ramesh, R (2017) Curvelet transform for estimation of machining performance. Optik 131, 615–625. https://doi.org/10.1016/j.ijleo.2016.11.181CrossRefGoogle Scholar
Rao, RV, Savsani, VJ, Vakharia, DP (2012) Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. Information sciences, 15;183(1), 15. https://doi.org/10.1016/j.ins.2011.08.006CrossRefGoogle Scholar
RS, UR, Ramesh, R and Rohit Varma, K (2020) Development of surface texture evaluation system for highly sparse data-driven machining domainsInternational Journal of Computer Integrated Manufacturing33(9),.859868. https://doi.org/10.1080/0951192X.2020.1803503Google Scholar
Salgado, DR, Cambero, I, Marcelo, A and Alonso, FJ (2009) Surface roughness prediction based on the correlation between surface roughness and cutting vibrations in dry turning with TiN-coated carbide tools. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 223(9), 11931205. https://doi.org/10.1243/09544054JEM1508CrossRefGoogle Scholar
Singh, SK, Srinivasan, K, Chakraborty, D (2004) Acoustic characterization and prediction of surface roughness. Journal of Materials Processing Technology, 152(2), 127130. https://doi.org/10.1016/j.jmatprotec.2004.03.023CrossRefGoogle Scholar
Tandon, N and Choudhury, A (1999) A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings. Tribology International, 32(8), 469480. https://doi.org/10.1016/S0301-679X(99)00077-8CrossRefGoogle Scholar
Togan, V (2012) Design of planar steel frames using teaching-learning based optimization. Engineering Structures 34, 225234. https://doi.org/10.1016/j.engstruct.2011.08.035.CrossRefGoogle Scholar
Tseng, TL, Konada, U, Kwon, Y (2016) A novel approach to predict surface roughness in machining operations using fuzzy set theory. Journal of Computational Design and Engineering, 3(1), 13. https://doi.org/10.1016/j.jcde.2015.04.002CrossRefGoogle Scholar
Wu, TY, Lei, KW (2019) Prediction of surface roughness in milling process using vibration signal analysis and artificial neural network. The International Journal of Advanced Manufacturing Technology, 102(1-4), 305314. https://doi.org/10.1007/s00170-018-3176-2CrossRefGoogle Scholar
Yücel, Y, Otuzbir, Ö, Yücel, E (2023) Surface roughness prediction in SILAR coating process of ZnO thin films: mathematical modelling and validation. Materials Today Communications, 1;34, 105101. https://doi.org/10.1016/j.mtcomm.2022.105101CrossRefGoogle Scholar
Zeng, S, Pi, D, and Xu, T (2023). Milling surface roughness prediction method based on spatiotemporal ensemble learning. The International Journal of Advanced Manufacturing Technology, 129. https://doi.org/10.1007/s00170-023-11737-yCrossRefGoogle Scholar
Zhao, Z, Wang, S, Wang, Z, Wang, S, Ma, C, Yang, B (2022) Surface roughness stabilization method based on digital twin-driven machining parameters self-adaption adjustment: a case study in five-axis machining. Journal of Intelligent Manufacturing, 1–10. https://doi.org/10.1007/s10845-020-01698-4CrossRefGoogle Scholar
Župerl, U and Čuš, F (2019) A cyber-physical system for surface roughness monitoring in end-milling. Journal of Mechanical Engineering/Strojniški Vestnik, 65(2). https://doi:10.5545/sv-jme.2018.5792Google Scholar
Supplementary material: File

Umamaheswara Raju et al. supplementary material

Umamaheswara Raju et al. supplementary material
Download Umamaheswara Raju et al. supplementary material(File)
File 16.7 KB