No CrossRef data available.
Published online by Cambridge University Press: 10 January 2024
A game that characterizes equivalence of structures with respect to all first-order sentences containing a given number of quantifiers was introduced by Immerman in 1981. We define three other games and prove that they are all equivalent to the Immerman game, and hence also give a characterization for the number of quantifiers needed for separating structures. In the Immerman game, Duplicator has a canonical optimal strategy, and hence Duplicator can be completely removed from the game by replacing her moves with default moves given by this optimal strategy. On the other hand, in the last two of our games there is no such optimal strategy for Duplicator. Thus, the Immerman game can be regarded as a one-player game, but two of our games are genuine two-player games.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.