Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-01T06:54:42.406Z Has data issue: false hasContentIssue false

Disease Progression and Sphingolipids and Neurofilament Light Chain in Early Idiopathic Parkinson’s Disease

Published online by Cambridge University Press:  29 August 2023

Blas Couto
Affiliation:
Edmond J. Safra Program in Parkinson’s Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada Institute of Cognitive and Traslational Neuroscience (INCyT), at the INECO-CONICET-Favaloro University Hospital, Buenos Aires, Argentina
Mario Sousa
Affiliation:
Department of Neurology, Inselspital, Bern University Hospital, Bern, Switzerland Graduate School for Health Sciences, University of Bern, Bern, Switzerland
Paulina Gonzalez-Latapi
Affiliation:
Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
Eric McArthur
Affiliation:
London Health Sciences Centre, London, ON, Canada
Anthony Lang
Affiliation:
Edmond J. Safra Program in Parkinson’s Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
Alice Chen-Plotkin
Affiliation:
Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
Connie Marras*
Affiliation:
Edmond J. Safra Program in Parkinson’s Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
*
Corresponding author: C. Marras; E-mail: [email protected]

Abstract:

Parkinson’s disease(PD) lacks a biomarker for disease progression. To analyze how cerebrospinal fluid (CSF), glucosylceramide (GlcCer), sphingomyelin (SM), or serum neurofilament light chain (NfL) associate with progression of PD in a retrospective cohort, we used linear mixed-model regressions between baseline biomarkers and change in dopamine transporter brain-imaging (DaTscan©), Montreal cognitive assesment (MoCA), or global composite outcome (GCO) score. In 191 PD patients, biomarkers were not associated with DaTscan or MoCA change over 2.1 years. Higher baseline GlcCer/SM ratio and serum-NfL nonsignificantly associated with increase in GCO score. Results do not support a role for CSF-sphingolipid/serum-NfL to predict cognitive and DaTscan progression in early-PD. Potential prediction of global clinical change warrants further study.

Résumé :

RÉSUMÉ :

Il n’existe pas de biomarqueur de la progression de la maladie de Parkinson (MP). Pour analyser comment le glucosylcéramide (GlcCer) et la sphingomyéline (SM) du liquide cérébrospinal (LCS) ou encore les neurofilaments à chaîne légère (NFCL) du sérum sont associés à la progression de la MP dans une cohorte rétrospective, nous avons utilisé des régressions linéaires à modèle mixte entre les biomarqueurs de base et l’évolution de résultats obtenus lors d’examens d’IRM du transporteur de la dopamine (DaTscan©) ainsi qu’au moyen du Montreal Cognitive Assessment (MoCA) ou du score Global Composite Outcome (GCO). Chez 191 patients atteints de la MP, les biomarqueurs n’ont pas été associés à l’évolution des résultats du DaTscan© ou du MoCA au cours d’une période de 2,1 ans. Un rapport GlcCer/SM de base plus élevé et les NFCL du sérum ont par ailleurs été associés de manière non notable à l’augmentation du score GCO. Ces résultats ne confirment donc pas le rôle de la SM du LCS et des NFCL dans la prédiction de la progression cognitive et des résultats au DaTscan© au début de la MP. En somme, la prédiction potentielle de l’évolution clinique globale de cette maladie mérite d’être étudiée plus avant.

Type
Brief Communication
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Canadian Neurological Sciences Federation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Espay, A, Kalia, L, Gan-Or, Z, et al. Disease modification and biomarker development in Parkinson disease: revision or reconstruction? Neurology. 2020;94:481–94. DOI: 10.1212/WNL.0000000000009107.CrossRefGoogle ScholarPubMed
Robak, L, Jansen, I, van Rooij, J, Uitterlinden, A, Kraaij, R, Jankovic, J. Excessive burden of lysosomal storage disorder gene variants in Parkinson’s disease. Brain. 2017;140:3191–203. DOI: 10.1093/brain/awx285.CrossRefGoogle ScholarPubMed
Nguyen, YC, Wong, D, Ysselstein, A, et al. Mitochondrial, and lysosomal dysfunction in Parkinson’s disease. Trends Neurosci. 2019; 42:140–9. DOI: 10.1016/j.tins.2018.11.001.CrossRefGoogle ScholarPubMed
Chahine, L, Qiang, J, Ashbridge, E, et al. Clinical and biochemical differences in patients having Parkinson disease with vs without GBA mutations. JAMA Neurol. 2013;70:852–8. DOI: 10.1001/jamaneurol.2013.1274.CrossRefGoogle ScholarPubMed
Alcalay, R, Mallett, V, Vanderperre, B, et al. SMPD1 mutations, activity, and α-synuclein accumulation in Parkinson’s disease. Mov Disord. 2019;34:526–35. DOI: 10.1002/mds.27642.CrossRefGoogle ScholarPubMed
Huebecker, M, Moloney, E, van der Spoel, A, et al. Reduced sphingolipid hydrolase activities, substrate accumulation and ganglioside decline in Parkinson’s disease. Mol Neurodegener. 2019;14:40. DOI: 10.1186/s13024-019-0339-z.CrossRefGoogle ScholarPubMed
Galper, J, Dean, N, Pickford, R, et al. Lipid pathway dysfunction is prevalent in patients with Parkinson’s disease. Brain. 2022;145:3472–87. DOI: 10.1093/brain/awac176.CrossRefGoogle ScholarPubMed
Huh, Y, Park, H, Chiang, M, et al. Glucosylceramide in cerebrospinal fluid of patients with GBA-associated and idiopathic Parkinson’s disease enrolled in PPMI. NPJ Parkinsons. 2021;7:102. DOI: 10.1038/s41531-021-00241-3.CrossRefGoogle ScholarPubMed
Mollenhauer, B, Dakna, M, Kruse, N, et al. Validation of serum neurofilament light chain as a biomarker of Parkinson’s disease progression. Mov Disord. 2020;35:19992008. DOI: 10.1002/mds.28206.CrossRefGoogle Scholar
Lerche, S, Schulte, C, Wurster, I, et al. The mutation matters: CSF profiles of GCase, Sphingolipids, α-synuclein in PD. Mov Disord. 2021;36:1216–28. DOI: 10.1002/mds.28472.CrossRefGoogle ScholarPubMed
Simuni, T, Siderowf, A, Lasch, S, et al. Longitudinal change of clinical and biological measures in early Parkinson’s disease: Parkinson’s progression markers initiative cohort. Mov Disord. 2018;33:771–82. DOI: 10.1002/mds.27361.CrossRefGoogle ScholarPubMed
Pasquini, J, Durcan, R, Wiblin, L, et al. Clinical implications of early caudate dysfunction in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2019;90:1098–104. DOI: 10.1136/jnnp-2018-320157.CrossRefGoogle ScholarPubMed
Fereshtehnejad, S, Zeighami, Y, Dagher, A, Postuma, R. Clinical criteria for subtyping Parkinson’s disease: biomarkers and longitudinal progression. Brain. 2017;140:1959–76. DOI: 10.1093/brain/awx118.CrossRefGoogle ScholarPubMed
Ye, R, Locascio, JJ, Goodheart, A, et al. Serum NFL levels predict progression of motor impairment and reduction in putamen dopamine transporter binding ratios in de novo Parkinson’s disease: an 8-year longitudinal study. Park and Rel Dis. 2021;85:11–6.CrossRefGoogle ScholarPubMed
De Pablo-Fernández, E, Lees, AJ, Holton, JL, Warner, TT. Prognosis and neuropathologic correlation of clinical subtypes of Parkinson disease. JAMA Neurol. 2019;76:470–9. DOI: 10.1001/jamaneurol.2018.4377.CrossRefGoogle ScholarPubMed
Supplementary material: File

Couto et al. supplementary material

Couto et al. supplementary material

Download Couto et al. supplementary material(File)
File 846.3 KB