Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T18:42:40.768Z Has data issue: false hasContentIssue false

Periodic pattern formation in the coupled chemotaxis-(Navier–)Stokes system with mixed nonhomogeneous boundary conditions

Published online by Cambridge University Press:  04 November 2019

Chunhua Jin*
Affiliation:
School of Mathematical Sciences, Normal University, Guangzhou510631, South China ([email protected])

Abstract

We consider the coupled chemotaxis-fluid model for periodic pattern formation on two- and three-dimensional domains with mixed nonhomogeneous boundary value conditions, and prove the existence of nontrivial time periodic solutions. It is worth noticing that this system admits more than one periodic solution. In fact, it is not difficult to verify that (0, c, 0, 0) is a time periodic solution. Our purpose is to obtain a time periodic solution with nonconstant bacterial density.

Type
Research Article
Copyright
Copyright © 2019 The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Braukhoff, M.. Global (weak) solution of the chemotaxis-Navier-Stokes equations with non-homogeneous boundary conditions and logistic growth. Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2017), 10131039.CrossRefGoogle Scholar
2Chen, X., Jüngel, A. and Liu, J.. A note on Aubin-Lions-Dubinskiĭ lemmas. Acta Appl. Math. 133 (2014), 3343.CrossRefGoogle Scholar
3Di Francesco, M., Lorz, A. and Markowich, P.. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior. Discrete Contin. Dyn. Syst. 28 (2010), 14371453.CrossRefGoogle Scholar
4Duan, R. and Xiang, Z.. A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion. Int. Math. Res. Not. IMRN 2014 (2014), 18331852.CrossRefGoogle Scholar
5Farwig, R. and Okabe, T.. Periodic solutions of the Navier-Stokes equations with inhomogeneous boundary conditions. Ann Univ Ferrara 56 (2010), 249281.CrossRefGoogle Scholar
6Galdi, G. P.. An introduction to the mathematical theory of the Navier-Stokes equations, Vol. 38(9), pp. 169174 (New York: Springer-Verlag, 1994).Google Scholar
7Jin, C.. Boundedness and global solvability to a chemotaxis model with nonlinear diffusion. J. Differential Equations 263 (2017), 57595772.CrossRefGoogle Scholar
8Jin, C.. Large time periodic solutions to coupled chemotaxis-fluid models. Z. Angew. Math. Phys. 68 (2017), 24 pp.CrossRefGoogle Scholar
9Jin, C.. Large time periodic solution to the coupled chemotaxis-Stokes model. Math. Nachr. 290 (2017), 17011715.Google Scholar
10Jin, C., Wang, Y. and Yin, J., Global solvability and stability to a nutrient-taxis model with porous medium slow diffusion, arXiv:submit/2224904.Google Scholar
11Kohr, M. and Pop, I., Viscous incompressible flow for low reynolds numbers. Advances in boundary elements, 16, 427 pp (Southampton: WIT Press, 2004).Google Scholar
12Kozono, H. and Yanagisawa, T.. Leray's problem on the stationary Navier-Stokes equations with inhomogeneous boundary data. Math. Z. 262 (2009), 2739.CrossRefGoogle Scholar
13Kuto, K., Osaki, K., Sakurai, T. and Tsujikawa, T.. Spatial pattern formation in a chemotaxis.diffusion.growth model. Physica D 241 (2012), 16291639.CrossRefGoogle Scholar
14Lankeit, J.. Long-term behaviour in a chemotaxis-fluid system with logistic source. Math. Models Methods Appl. Sci. 26 (2016), 20712109.CrossRefGoogle Scholar
15Lankeit, J. and Wang, Y.. Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption. Discrete Contin. Dyn. Syst. 37 (2017), 60996121.CrossRefGoogle Scholar
16Lee, J. M., Hillen, T. and Lewis, M. A.. Pattern formation in prey-taxis systems. J. Biol. Dyn. 3 (2009), 551573.CrossRefGoogle ScholarPubMed
17Lions, J. L. and Magenes, E., Problémes aux limites non homogenes et applications, vol. 1, 1968.Google Scholar
18Liu, J. and Lorz, A.. A coupled chemotaxis-fluid model: global existence. Ann. I. H. Poincaré -AN 28 (2011), 643652.CrossRefGoogle Scholar
19Murray, J.. Mathematical biology. 2nd ed. (Berlin Heidelberg: Springer-Verlag, 1993.CrossRefGoogle Scholar
20Nakao, M. and Koyanagi, R.. Existence of classical periodic solutions of semilinear parabolic equations with the Neumann boundary condition. Funkcial. Ekvac. 28 (1985), 213219.Google Scholar
21Simon, J.. Compact sets in the space L p(0,T; B). Ann. Mat. Pura Appl. 146 (1987), 6596.CrossRefGoogle Scholar
22Tao, Y. and Winkler, M.. Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion. Discrete Contin. Dyn. Syst. 32 (2012), 19011914.CrossRefGoogle Scholar
23Tao, Y. and Winkler, M.. Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion. Ann. I. H. Poincaré AN 30 (2013), 157178.CrossRefGoogle Scholar
24Turing, A. M.. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237 (1952), 3772.Google Scholar
25Tuval, I., Cisneros, L., Dombrowski, C., Wolgemuth, C., Kessler, J. and Goldstein, R.. Bacterial swimming and oxygen transport near contact lines. Proc. Natl. Acad. Sci. USA 102 (2005), 22772282.CrossRefGoogle ScholarPubMed
26Wang, Q., Song, Y. and Shao, L.. Nonconstant positive steady states and pattern formation of 1d prey-taxis systems. J Nonlinear Sci 27 (2017), 7197.CrossRefGoogle Scholar
27Winkler, M.. Global large-data solutions in a chemotaxis- (Navier-)Stokes system modeling cellular swimming in fluid drops. Communications in Partial Differential Equations 37 (2012), 319351.CrossRefGoogle Scholar
28Winkler, M.. Stabilization in a two-dimensional chemotaxis-Navier-Stokes system. Arch. Ration. Mech. Anal. 211 (2014), 455487.Google Scholar
29Winkler, M.. Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity. Calc. Var. PDE 54 (2015), 37893828.CrossRefGoogle Scholar
30Winkler, M.. How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system? Trans. Amer. Math. Soc. 369 (2017), 30673125.CrossRefGoogle Scholar
31Winkler, M.. Global existence and stabilization in a degenerate chemotaxis-Stokes system with mildly strong diffusion enhancement. J. Differential Equations 264 (2018), 61096151.CrossRefGoogle Scholar
32Wu, Z., Li, J., Li, J., Liu, S., Zhou, L. and Luo, Y.. Pattern formations of an epidemic model with Allee effect and time delay. Chaos, Solitons and Fractals 104 (2017), 599606.CrossRefGoogle Scholar
33Yin, J. and Jin, C.. Periodic solutions of the evolutionary p-Laplacian with nonlinear sources. J. Math. Anal. Appl. 368 (2010), 604622.CrossRefGoogle Scholar
34Zhu, M. and Murray, J. D.. Parameter domains for generating spatial pattern: a comparison of reaction diffusion and cell-chemotaxis models. Intern. J. Bifurcation & Chaos 5 (1995), 15031524.CrossRefGoogle Scholar