Hostname: page-component-6587cd75c8-vfwnz Total loading time: 0 Render date: 2025-04-23T18:16:06.690Z Has data issue: false hasContentIssue false

Characterisation and serodiagnostic evaluation of a recombinant 22.6-kDa tegument protein of Schistosoma spindale

Published online by Cambridge University Press:  10 December 2024

M.N. Priya*
Affiliation:
Kerala Veterinary and Animal Sciences University (KVASU), Pookode, Wayanad, Kerala, India
L. Bindu
Affiliation:
Kerala Veterinary and Animal Sciences University (KVASU), Pookode, Wayanad, Kerala, India
M.A. Pradeep
Affiliation:
ICAR-Central Marine Fisheries Research Institute, Kerala, India
E.A. Nisha
Affiliation:
ICAR-Central Marine Fisheries Research Institute, Kerala, India
A. Amrutha
Affiliation:
Kerala Veterinary and Animal Sciences University (KVASU), Pookode, Wayanad, Kerala, India
S. Nikitha
Affiliation:
Kerala Veterinary and Animal Sciences University (KVASU), Pookode, Wayanad, Kerala, India
R. Asha
Affiliation:
Kerala Veterinary and Animal Sciences University (KVASU), Pookode, Wayanad, Kerala, India
M. Shynu
Affiliation:
Kerala Veterinary and Animal Sciences University (KVASU), Pookode, Wayanad, Kerala, India
K. Devada
Affiliation:
Kerala Veterinary and Animal Sciences University (KVASU), Pookode, Wayanad, Kerala, India
*
Corresponding author: M.N. Priya; Email: [email protected]

Abstract

Schistosomosis in animals due to Schistosoma spindale significantly burdens India’s livestock economy because of high prevalence and morbidity and is mostly underdiagnosed from the lack of sensitive tools for field-level detection. This study aimed to clone, express the 22.6-kDa tegument protein of S. spindale (rSs22.6kDa) and to utilise it in a dot enzyme-linked immunosorbent assay for serodiagnosis. RNA was extracted from adult worms recovered from the mesenteries of slaughtered cattle to amplify the gene encoding the 22.6-kDa protein. In silico analysis revealed the protein’s secondary structure, consisting of 190 amino acids forming alpha helices (47.89%), extended strands (17.37%), beta turns (8.95%), and random coils (25.79%), with α helices and β sheets in the tertiary structure. Two conserved domains were noted: an EF-hand domain at the N-terminus and a dynein light-chain domain at the C-terminus. Phylogenetic studies positioned the S. spindale sequence as a sister clade to Schistosoma haematobium and Schistosoma bovis. The gene was cloned into a pJET vector and transformed into Escherichia coli Top 10 cells, with expression achieved using a pET28b vector, BL21 E. coli cells, and induction with 0.6 mM isopropyl-β-d-thiogalactopyranoside. The protein’s soluble fraction was purified using nickel-chelating affinity chromatography, confirmed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and immunoblotting, identifying a distinct immunodominant 22.6-kDa protein. The diagnostic utility was validated using a dot enzyme-linked immunosorbent assay which demonstrated a of sensitivity of 89.47% and specificity of 100%. The study records for the first time the prokaryotic expression and evaluation of the 22.6-kDa tegumental protein of S. spindale, highlighting its potential as a diagnostic antigen for seroprevalence studies in bovine intestinal schistosomosis.

Type
Research Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alarcon, de Noya, Colmenares, C, Lanz, H, Caracciolo, MA, Losada, S and Noya, O (2000). Schistosoma mansoni: immunodiagnosis is improved by sodium metaperiodate which reduces cross-reactivity due to glycosylated epitopes of soluble egg antigen. Experimental Parasitology 95, 106112. doi:10.1006/expr.2000.4515CrossRefGoogle Scholar
Anisuzzaman, MD, Hossain, S, Hatta, T, Labony, SS, Kwofie, KD, Kawada, H, Tsuji, N and Alim, MA (2023). Chapter Two - Food- and vector-borne parasitic zoonoses: Global burden and impacts. Adv. Parasitol. 120, 87136. https://doi.org/10.1016/bs.apar.2023.02.001CrossRefGoogle Scholar
Andrell, J and Tate, CG (2013). Overexpression of membrane proteins in mammalian cells for structural studies. Molecular Membrane Biology 30, 5263. doi: 10.3109/09687688.2012.703703CrossRefGoogle ScholarPubMed
Anisuzzaman, and Tsuji, N (2020) Schistosomiasis and hookworm infection in humans: disease burden, pathobiology and anthelmintic vaccines. Parasitology International 75, 102051. https://doi.org/10.1016/j.parint.2020.102051CrossRefGoogle ScholarPubMed
Anisuzzaman, Frahm S, Prodjinotho, UF, Bhattacharjee, S, Verschoor, A and Prazeres da Costa, C (2021). Host-specific serum factors control the development and survival of Schistosoma mansoniFrontiers in Immunology 12: 635622.CrossRefGoogle ScholarPubMed
Baneyx, F and Mujacic, M (2004). Recombinant protein folding and misfolding in Escherichia coli. Nature Biotechnology 22, 13991408. doi:10.1038/nbt1029CrossRefGoogle ScholarPubMed
Barker, SC and Blair, D (1996). Molecular phylogeny of Schistosoma species supports traditional groupings within the genus. Journal of Parasitology 82, 292298.CrossRefGoogle ScholarPubMed
Bornhorst, JA and Falke, JJ (2000). Purification of proteins using polyhistidine affinity tags. Methods in Enzymology 326, 245254. doi: 10.1016/s0076-6879(00)26058-8CrossRefGoogle Scholar
Braschi, S, Curwen, RS, Ashton, PD, Verjovski-Almeida, S and Wilson, A (2006). The tegument surface membranes of the human blood parasite Schistosoma mansoni: a proteomic analysis after differential extraction. Proteomics 5, 14711482. https://doi.org/10.1002/pmic.200500368CrossRefGoogle Scholar
Brooker, S and Clements, AC (2009). Spatial heterogeneity of parasite coinfection: determinants and geostatistical prediction at regional scales. International Journal for Parasitology 39, 591597. doi: 10.1016/j.ijpara.2008.10.014CrossRefGoogle ScholarPubMed
Cai, P, Bu, L, Wang, J, Wang, Z, Zhong, X and Wang, H (2008). Molecular characterization of Schistosoma japonicum tegument protein tetraspanin-2: sequence variation and possible implications for immune evasion. Biochemical and Biophysical Research Communications 327, 197202. doi: 10.1016/j.bbrc.2008.05.042CrossRefGoogle Scholar
Clements, AC, Deville, MA, Ndayishimiye, O, Brooker, S and Fenwick, A (2010). Spatial co-distribution of neglected tropical diseases in the east African great lakes region: revisiting the justification for integrated control. Tropical Medicine & International Health 15, 198207. doi: 10.1111/j.1365-3156.2009.02440.xCrossRefGoogle ScholarPubMed
Colley, DG, Bustinduy, AL, Secor, WE and King, CH (2014). Human schistosomiasis. Lancet 383, 22532264. doi:10.1016/S0140-6736(13)61949-2.CrossRefGoogle ScholarPubMed
Damasceno, L, Ritter, G and Batt, CA (2017). Process development for production and purification of the Schistosoma mansoni Sm14 antigen. Protein Expression and Purification 134, 7281. doi: 10.1016/j.pep.2017.04.002CrossRefGoogle ScholarPubMed
De Bont, J and Vercruysse, J (1997). The epidemiology and control of cattle schistosomiasis. Parasitology Today 13, 255262. doi: 10.1016/s0169-4758(97)01057-0CrossRefGoogle ScholarPubMed
DeLano, WL (2002). The PyMOL Molecular Graphics System. DeLano Scientific, Palo Alto, CA, USA.Google Scholar
Dias, SRC, Boroni, M, Rocha, EA, Dias, TL, Souza, DL, Oliveira, FMS, Bitar, M, Macedo, AM, Machado, CR, Caliari, MV and Franco, GR (2014). Evaluation of the Schistosoma mansoni Y-box-binding protein (SMYB1) potential as a vaccine candidate against schistosomiasis. Frontiers in Genetics 5, 174. doi: 10.3389/fgene.2014.00174.Google ScholarPubMed
Divya, SP, Lakshmanan, B, Subramanian, H (2012). Prevalence of schistosomosis in cattle. The Indian Veterinary Journal 89, 8182.Google Scholar
Doenhoff, MJ, Chiodini, PL and Hamilton, JV (2004). Specific and sensitive diagnosis of schistosome infection: can it be done with antibodies? Trends in Parasitology 20, 3539. https://doi.org/10.1016/j.pt.2003.10.019CrossRefGoogle ScholarPubMed
Dunne, DW, Webster, M and Smith, P (1997). The isolation of a 22 kDa band after SDS-PAGE of Schistosoma mansoni adult worms and its use to demonstrate the IgE responses against the antigen(s) it contains are associated with human resistance to reinfection. Parasite Immunology 19, 7989. doi: 10.1046/j.1365-3024.1997.d01-186.xCrossRefGoogle ScholarPubMed
Fonseca, CT, Carvalho, GBF, Alves, CC and DeMelo, TT (2012). Schistosoma tegument proteins in vaccine and diagnosis development: an update. Journal of Parasitology Research doi:10.1155/2012/541268CrossRefGoogle Scholar
Frahm, S, Anisuzzaman, A, Prodjinotho, UF, Vejzagic, N, Verschoor, A and Prazeres da Costa, C (2019). A novel cell-free method to culture Schistosoma mansoni from cercariae to juvenile worm stages for in vitro drug testing. PLOS Neglected Tropical Diseases 13, e0006590. https://doi.org/10.1371/journal.pntd.0006590CrossRefGoogle ScholarPubMed
Han, ZG, Brindley, PJ, Wang, SY and Chen, Z (2009). Schistosoma genomics: new perspectives on schistosome biology and host-parasite interactionAnnual Review of Genomics and Human Genetics 10, 211240. doi: 10.1146/annurev-genom-082908-150036CrossRefGoogle ScholarPubMed
Hellemond, JV, Retra, K, Brouwers, JFHM, van Balkom, BWM, Yazdanbakhsh, M, Shoemaker, CB and Tielens, AGM (2006). Functions of the tegument of schistosomes: clues from the proteome and lipidome. International Journal for Parasitology 36, 691699. doi: 10.1016/j.ijpara.2006.01.007CrossRefGoogle ScholarPubMed
Hossain, MS, Hatta, T, Labony, SS, Kwofie, KD, Kawada, H, Tsuji, N and Alim, MA (2023). Food-and vector-borne parasitic zoonoses: global burden and impactsAdvances in Parasitology120, 87136.Google Scholar
Kumar, V (1999). Trematode infections and diseases of man and animals. Kluwer Academic Publishers, The Netherlands.CrossRefGoogle Scholar
Labony, SS, Hossain, MS, Hatta, T, Dey, AR, Mohanta, UK, Islam, A, Shahiduzzaman, M, Hasan, MM, Alim, MA, Tsuji, N and Anisuzzaman, A (2022). Mammalian and avian larval schistosomatids in Bangladesh: molecular characterization, epidemiology, molluscan vectors and occurrence of human cercarial dermatitis. Pathogens 11, 1213. https://doi.org/10.3390/pathogens11101213CrossRefGoogle ScholarPubMed
Laemmli, UK (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685. doi: 10.1038/227680a0CrossRefGoogle ScholarPubMed
Lakshmanan, B (2014). Development of improved diagnostics for the detection of bovine intestinal schistosomosis. PhD Thesis, Kerala Veterinary and Animal Sciences University, Pookode.Google Scholar
Lakshmanan, B, Devada, K, Joseph, S, Gleeja, VL, Aravindakshan, TV, Himachala, K and Sankar, S (2018). Seroprevalence of bovine intestinal schistosomosis in different agroecological zones of south India using excretory-secretory antigen based ELISA. Veterinary Parasitology 262, 5155. doi: 10.1016/j.vetpar.2018.09.012CrossRefGoogle Scholar
Lakshmanan, B, Devada, K, Joseph, S and Radhika, R (2016). Immunoblot analysis of Schistosoma spindale excretory–secretory antigens with sera from naturally infected bovines. Journal of Applied Animal Research 44, 210214. https://doi.org/10.1080/09712119.2015.1031770CrossRefGoogle Scholar
Li, Y, Wang, L, Fang, R, Nie, H, Zhou, Y and Zhao, J (2012). Establishment and evaluation of an iELISA using the recombinant membrane protein LHD-Sj23for the serodiagnosis of Schistosoma japonicum infection in cattle in China. Veterinary Parasitology 188, 247254. doi: 10.1016/j.vetpar.2012.03.047CrossRefGoogle ScholarPubMed
Lopes, DO, Paiva, LF, Martins, MA, Cardoso, FC, Rajão, MA, Pinho, JM, Caliari, MV, Oliveira, RC, Mello, SM, Leite, LCC and Oliveira, SC (2009). Sm21.6 a novel EF-hand family protein member located on the surface of Schistosoma mansoni adult worm that failed to induce protection against challenge infection but reduced liver pathology. Vaccine 27, 41274135.CrossRefGoogle ScholarPubMed
Lv, C, Hong, Y, Fu, Z, Lu, K, Cao, X, Wang, T, Zhu, C, Li, H, Xu, R, Jia, B, Han, Q, Dou, X, Shen, Y, Zhang, Z, Zai, J, Feng, J and Lin, J (2016). Evaluation of recombinant multi-epitope proteins for diagnosis of goat schistosomiasis by enzyme-linked immunosorbent assay. Parasites Vectors 9, 135145.CrossRefGoogle ScholarPubMed
Mafuyai, HB, Uneke, CJ, Njoku, MO and Chuga, G (2006). Dot-ELISA and parasitological examination for diagnosis of S. mansoni infection in Nigeria. Helminthology 43, 1115.CrossRefGoogle Scholar
Magdeldin, S, Yoshida, Y, Li, H, Maeda, Y, Yokoyama, M, Enany, S, Zhang, Y, Xu, B, Fujinaka, H, Yaoita, E, Sasaki, S and Yamamoto, T (2012). Murine colon proteome and characterization of the protein pathways. BioData Mining 5, 11. doi: 10.1186/1756-0381-5-11CrossRefGoogle ScholarPubMed
Marchler-Bauer, A, Derbyshire, MK, Gonzales, NR, Lu, S, Chitsaz, F, Geer, LY, Geer, RC, He, J, Gwadz, M, Hurwitz, DI, Lanczycki, CJ, Lu, F, Marchler, GH, Song, JS, Thanki, N, Wang, Z, Yamashita, RA, Zhang, D, Zheng, C and Bryant, SH (2015). CDD: NCBI’s conserved domain database. Nucleic Acids Research 43, D222D226.CrossRefGoogle ScholarPubMed
McCauley, EH, Majid, AA and Tayeb, A (1984). Economic evaluation of the production impact of bovine schistosomiasis and vaccination in Sudan. Preventive Veterinary Medicine 6, 735754. https://doi.org/10.1016/0167-5877(84)90030-8CrossRefGoogle Scholar
Montenegro, SML, Silva, JDB, Brito, MEF and Caravalho, LB (1999). Dot ELISA for schistosomosis using Dacron as solid base. Revista da Sociedade Brasileira de Medicina Tropical 32, 139143.CrossRefGoogle Scholar
Motamedi, H, Alvandi, A, Fathollahi, M, Ari, MM, Moradi, S, Moradi, J and Abiri, R (2023). In silico designing and immunoinformatics analysis of a novel peptide vaccine against metallo-betalactamase (VIM and IMP) variants. PLoS ONE 18, e0275237. https://doi.org/10.1371/journal.pone.0275237CrossRefGoogle Scholar
Mott, KE, Dixon, H, Carter, CE, Garcia, E, Ishi, A, Matsuda, H, Mitchell, G, Owhashi, M, Tanaka, H and Tsang, VC (1987). Collaborative study on antigens for immunodiagnosis of Schistosoma japonicum infection. Bulletin of the World Health Organization 65, 233244.Google Scholar
Mulvenna, J, Moertel, L, Jones, MK, Nawaratna, S, Lovas, EM, Gobert, GN, Colgrave, M, Jones, A, Loukas, A and McManus, DP (2010). Exposed proteins of the Schistosoma japonicum tegumentInternational Journal for Parasitology 40, 543554. doi: 10.1016/j.ijpara.2009.10.002CrossRefGoogle ScholarPubMed
Murthy, GSS, D’Souza, PE and Isloor, KS (2013). Evaluation of a polyclonal antibody based sandwich ELISA for the detection of faecal antigens in Schistosoma spindale infections in bovines. Journal of Parasitic Diseases 37, 4751. doi: 10.1007/s12639-012-0129-9Google Scholar
Noya, O, de Noya, B, Losada, S, Colmenares, C, Guzman, C, Lorenzo, MA and Bermudez, H (2002). Laboratory diagnosis of Schistosomiasis in areas of low transmission. A review of a line of research. Memórias do Instituto Oswaldo Cruz 97, 167169.CrossRefGoogle ScholarPubMed
O’Connell, DJ, Bauer, MC, O’Brien, J, Johnson, WM, Divizio, CA and O’Kane, SL (2018). Protein engineering of Cas9 for improved function. Methods in Enzymology 609, 139163. doi:10.1016/bs.mie.2018.08.001Google Scholar
Pacifico, LG, Fonseca, CT, Chiari, L and Oliveira, SC (2006). Immunization with Schistosoma mansoni 22.6 kDa antigen induces partial protection against experimental infection in a recombinant protein form but not as DNA vaccineImmunobiology 211, 97104.CrossRefGoogle Scholar
Peng, SY, Lee, KM, Tsaihong, JC, Cheng, PC and Fan, PC (2008) Evaluation of recombinant fructose-1,6-bisphosphate aldolase ELISA test for the diagnosis of Schistosoma japonicum in water buffaloes. Research in Veterinary Science 85, 527533. doi: 10.1016/j.rvsc.2008.02.005CrossRefGoogle Scholar
Pinto, PL, Kanamura, HY, Silva, RM, Rossi, CR, de Andrade Júnior, HF and Amato, NV (1995). Dot-ELISA for the detection of IgM and IgG antibodies to Schistosoma mansoni worm and egg antigens, associated with egg excretion by patients. Revista da Sociedade Brasileira de Medicina Tropical 37, 109–15.Google ScholarPubMed
Ponomarenko, J, Regenmortel, MHV (2009) B cell epitope prediction. Structural Bioinformatics 2, 849879.Google Scholar
Qiu, C, Fu, Z, Shi, Y, Hong, Y, Liu, S and Lin, J (2013). A retinoid X receptor (RXR1) homolog from Schistosoma japonicum: Its ligand-binding domain may bind to 9-cis-retinoic acid. Molecular and Biochemical Parasitology 188, 4050.CrossRefGoogle ScholarPubMed
Raso, G, Vounatsou, P, Singer, BH, N’Goran, EK, Tanner, M and Utzinger, J (2006). An integrated approach for risk profiling and spatial prediction of Schistosoma mansoni – hookworm coinfection. PNAS USA 103, 69346939. doi: 10.1073/pnas.0601559103CrossRefGoogle ScholarPubMed
Ren, CP, Liu, Q, Liu, FC, Zhu, FY, Cui, SX, Liu, Z, Gao, WD, Liu, M, Ji, YS and Shen, JJ (2017). Development of monoclonal antibodies against Sj29 and its possible application for schistosomiasis diagnosis. The International Journal of Infectious Diseases 61, 7478. doi: 10.1016/j.ijid.2017.04.009CrossRefGoogle ScholarPubMed
Rosano, GL and Ceccarelli, EA (2014). Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in Microbiology 5, 173. doi: 10.3389/fmicb.2014.00172CrossRefGoogle ScholarPubMed
Sambrook, J and Russell, DW (2001). Molecular Cloning: A Laboratory Manual. (3rd Ed), Cold Spring Harbor Laboratory Press, New York.Google Scholar
Samoil, V, Dagenais, M, Ganapathy, V, Aldridge, J, Glebov, A, Jardim, A and Ribeiro, P (2018). Vesicle-based secretion in schistosomes: analysis of protein and microRNA (miRNA) content of exosome-like vesicles derived from Schistosoma mansoni. Scientific Reports 8: 3286. DOI:10.1038/s41598-018-21587-4CrossRefGoogle ScholarPubMed
Santiago, ML, Hafalla, JCR and Kurtis, JD (1998). Identification of the Schistosoma japonicum 22.6-kDa antigen as a major target of the human IgE response: similarity of IgE-binding epitopes to allergen peptides. International Archives of Allergy and Immunology 117, 94104. doi: 10.1159/000023995CrossRefGoogle Scholar
Sawal, HA, Nighat, S, Safdar, T and Anees, L (2023). Comparative in silico analysis and functional characterization of TANK-Binding Kinase 1–Binding Protein 1. Bioinformatics and Biology Insights 17, 15. doi:10.1177/11779322231164828Google ScholarPubMed
Sharma, G, Kaur, A, Goyal, D, Nisha, N and Vyas, M (2020). Western blotting: an introduction. Biotechnology Journal International 24, 2738. doi:10.9734/bji/2020/v24i330118Google Scholar
Shi, D, Yin, J, Guo, R, Guo, L, Liu, Y and Li, L (2018). Optimization of histidine-tagged protein purification by high-performance immobilized metal affinity chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 1074-1075, 3338. doi:10.1016/j.jchromb.2018.01.029Google Scholar
Sivakumar, K and Balaji, S (2018). In silico characterization of antifreeze proteins using computational tools and servers. Journal of Chemical Sciences 16, 721730. doi:10.1016/j.jgeb.2018.08.004Google Scholar
Struk, A, Boer, DR and Rigden, DJ (2019). Can dynein light chains help elucidate the evolutionary history of cytoplasmic dynein intermediate chains? Trends in Cell Biology 29, 875878. doi:10.1016/j.tcb.2019.08.005Google Scholar
Sudhakar, K, Murthy, GSS and Rajeshwari, G (2017). An abattoir study of bovine visceral schistosomiasis in Telengana state, India. International Journal of Agricultural Sciences 8, 32053208.Google Scholar
Sumanth, S, D’Souza, PE and Jagannath, MS (2003). Immunodiagnosis of nasal and visceral schistosomosis in cattle by Dot-ELISA. The Indian Veterinary Journal 80, 495498.Google Scholar
Sumanth, S, D’Souza, PE and Jagannath, MS (2004). A study of nasal and visceral schistosomosis in cattle slaughtered at an abattoir in Bangalore, South India. Revue scientifique et technique/ Office international des epizooties 23, 937942. doi: 10.20506/rst.23.3.1537Google Scholar
Tamura, K and Nei, M (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzeesMolecular Biology and Evolution 10, 512526. doi: 10.1093/oxfordjournals.molbev.a040023Google ScholarPubMed
Tamura, K, Nei, M and Kumar, S (2004). Prospects for inferring very large phylogenies by using the neighbor-joining methodPNAS 101, 1103011035. doi: 10.1073/pnas.0404206101CrossRefGoogle ScholarPubMed
Tamura, K, Peterson, D, Peterson, N, Stecher, G, Nei, M and Kumar, S (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methodsMolecular Biology and Evolution 28, 27312739. doi: 10.1093/molbev/msr121CrossRefGoogle ScholarPubMed
Torre-Escudero, E, Román, RM, Sánchez, RP, Barrera, I, Siles-Lucas, M and Oleaga, A (2012). Molecular cloning, characterization and diagnostic performance of the Schistosoma bovis 22.6 antigen. Veterinary Parasitology 190, 530540. doi: 10.1016/j.vetpar.2012.06.023CrossRefGoogle ScholarPubMed
Towbin, H, Staehelint, T and Gordon, J (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. PNAS 76, 43504354. doi: 10.1073/pnas.76.9.4350CrossRefGoogle ScholarPubMed
van Balkom, BW, van Gestel, RA, Brouwers, JFHM, Krijgsveld, J, Tielens, AGM, Heck, AJ and Van Hellemond, JJ (2005). Mass spectrometric analysis of the Schistosoma mansoni tegumental sub-proteome. Journal of Proteome Research 4, 958966. doi: 10.1021/pr050036wCrossRefGoogle ScholarPubMed
Vichasri-Grams, S, Subpipattana, P, Sobhon, P, Viyanant, V and Grams, R (2006). An analysis of the calcium-binding protein 1 of Fasciola gigantica with a comparison to its homologs in the phylum Platyhelminthes. Molecular and Biochemical Parasitology 146, 1023.Google ScholarPubMed
Vieira Gomes, AM, Souza Dias, DC, Felli Venancio, K, Vicentini, R (2014). Purification of recombinant proteins: nickel affinity chromatography. Methods Mol Biol 1129, 7187.Google Scholar
Xu, X, Zhang, Y, Lin, D, Zhang, J, Xu, J, Liu, YM, Hu, F, Qing, X, Xia, C and Pan, W (2014). Serodiagnosis of Schistosoma japonicum infection: genome-wide identification of a protein marker, and assessment of its diagnostic validity in a field study in ChinaThe Lancet Infectious Diseases 14, 489497. doi: 10.1016/S1473-3099(14)70067-2CrossRefGoogle Scholar
Zhang, M, Fu, Z, Li, C, Han, Y, Cao, X, Han, H, Liu, Y, Lu, K, Hong, Y, Lin, J (2015b). Screening diagnostic candidates for schistosomiasis from tegument proteins of adult Schistosoma japonicum using an immunoproteomicn approach. PLOS Neglected Tropical Diseases 9. doi:10.1371/journal.pntd.0003454.CrossRefGoogle ScholarPubMed
Zhang, Y, He, Y, He, L, Zong, HY and Cai, GB (2015a). Molecular cloning and characterization of a phospholipidhydroperoxide glutathione peroxidase gene from a blood fluke Schistosoma japonicum. Molecular and Biochemical Parasitology 203, 513. doi: 10.1016/j.molbiopara.2015.10.001CrossRefGoogle Scholar
Zhang, Z, Xu, H, Gan, W, Zeng, S and Hu, X (2012). Schistosoma japonicum calcium-binding tegumental protein SjTP22.4 immunization confers praziquantel schistosomulumicide and antifecundity effect in mice. Vaccine 30, 51415150. doi: 10.1016/j.vaccine.2012.05.056CrossRefGoogle ScholarPubMed
Supplementary material: File

Priya et al. supplementary material 1

Priya et al. supplementary material
Download Priya et al. supplementary material 1(File)
File 518.8 KB
Supplementary material: File

Priya et al. supplementary material 2

Priya et al. supplementary material
Download Priya et al. supplementary material 2(File)
File 886.3 KB