Introduction
In every clinical setting, healthcare workers (HCWs) often face numerous occupational hazards, such as being exposed to the human immunodeficiency virus (HIV), because they are in continuous direct contact with their patients [Reference Simieneh, Tadesse, Kebede, Gashaw and Abebe1] to provide them with immediate care. Because of high patient volumes in the emergency department, nurses there are overloaded, and hence they are at the highest risk of such exposure [Reference Mengistu, Dirirsa, Mati, Ayele, Bayu, Deriba, Alemu, Demmu, Asefa and Geremew2].
Recent research shows that exposure to HIV is mostly caused by sexual intercourse (62.6%), and developing countries account for more than 90% of these events [Reference Gebremariyam3]. However, among HCWs, this can sometimes be caused by exposure to the blood and body fluids (BBFs) of infected patients [Reference Mengistu, Dirirsa, Mati, Ayele, Bayu, Deriba, Alemu, Demmu, Asefa and Geremew2]. Every year, approximately 15 000 healthcare workers are infected with this preventable infection [4, Reference Zhang, Li, Guan, Fan, Li, Zhang and Yuan5].
The consequences of BBF exposure include not only the risk of HIV transmission but also the transmission of various pathogens such as hepatitis B virus (HBV), hepatitis C virus (HCV), and other blood-borne pathogens that result in systemic and localised site infection [Reference Abere, Yenealem and Wami6, Reference Madiba, Nkambule, Kungoane and Bhayat7]. Furthermore, the fear of infection might lead to significant anxiety and depression issues [Reference Yenesew and Fekadu8, Reference Yasin, Fisseha, Mekonnen and Yirdaw9].
In a study conducted among the HCWs in Iran, the highest rates of exposure were found to be among young and recently employed nurses with less than 3 years of experience (74.6%). Of those HCWs, 3% of them had been infected by known HIV-positive patients, 13% were known hepatitis B serum antigen (HBs-Ag) positive, and 2% were HCV-positive patients [Reference Naderi, Sheybani, Bojdi, Mostafavi and Khosravi10].
The frequency and annual rate of HIV prevalence are higher among HCWs in the emergency department. For instance, according to a research conducted by Gourni P et al., of the exposed HCWs, 22.3% were found to be HIV positive [Reference Mengistu, Dirirsa, Mati, Ayele, Bayu, Deriba, Alemu, Demmu, Asefa and Geremew2, Reference Yasin, Fisseha, Mekonnen and Yirdaw9].
A systematic review and meta-analysis conducted in 2017 in 21 African countries showed that, of 65.5% of exposed HCWs, 25% tested positive for the human immunodeficiency virus [Reference Auta, Adewuyi, Tor-Anyiin, Aziz, Ogbole, Ogbonna and Adeloye11]. Higher patient flow, a lower ratio of HCWs to patients, failure to implement standard precautions, inadequate supply of basic safety equipment, lack of training, and inadequate supply of personal protective equipment (PPE) are factors that contribute to the higher prevalence of infection [Reference Auta, Adewuyi, Tor-Anyiin, Aziz, Ogbole, Ogbonna and Adeloye11, Reference Chalya, Seni, Mushi, Mirambo, Jaka, Rambau, Mabula, Kapesa, Ngallaba, Massinde and Kalluvya12].
Currently, in Ethiopia, there is a lack of reports that quantify the pooled prevalence of HIV among HCWs. Moreover, the epidemiology of HIV in Ethiopia has been on the rise and has been dynamically changing over the past two decades, along with poor compliance with standard precautions among HCWs [Reference Sahiledengle, Tekalegn, Woldeyohannes and Quisido13–Reference Akalu, Aynalem, Shiferaw, Merkeb Alamneh, Getnet, Abebaw, Atnaf, Abate, Tilahun, Kassie and Aschale15].
Methods
Study design and setting
A multi-centered, institutional-based, cross-sectional study was conducted among HCWs in public hospitals in Addis Ababa city from 18 September 2022 to 30 October 2022. Addis Ababa is the capital city of Ethiopia, which is located in the central part of the country. Additionally, it is the seat of the African Union and the United Nations’ World Economic Commission for Africa. Here, there are more than 53 hospitals, of which 13 are public hospitals and more than 40 are private hospitals [Reference Sahile16–Reference Adal and Emishaw18]. The study population contained all HCWs who were working in five randomly selected public hospitals in Addis Ababa city.
Sample size, sampling procedure, and technique
The actual sample size for the study was determined using a single population proportion formula n = [(zα/2)2p(1−p)]/d 2}, where n = sample size, zα/2 = 95% confidence level, p = the proportion of HIV-positive HCWs among those exposed to BBFs in the previous study (48.2%) [Reference Atlaw19], and d = margin of error (0.05). By considering 10% of non-response rate, the final sample size of the study was 422. To determine the representativeness of the sample, by using the lottery method, the principal investigators were randomly selected from two-thirds of the total hospitals (three from five). The sample size for each hospital was proportionally allocated based on the number of HCWs in each hospital. Individuals who fulfilled the inclusion criteria were selected using systematic random sampling at two intervals from their list. Their lists were obtained from the office of the chief clinical director of each hospital. Then, consent was obtained from each study participant.
Inclusion criteria
All HCWs who were exposed to BBFs over the past 12 months and tested positive for HIV after exposure using a rapid diagnostic test (HIV serum-antibody test kit) were included.
Exclusion criteria
Healthcare workers who did not know their HIV sero-status, meaning they had not been exposed or tested after exposure in the previous 12 months, were excluded.
Operational definitions
HIV prevalence greater than 1.2% or said to be high prevalence [Reference Gelibo, Lulseged, Eshetu, Abdella, Melaku, Ajiboye, Demissie, Solmo, Ahmed, Getaneh, Kaydos-Daniels and Abate20].
Data collection tools
The English version of the self-administered questionnaire was used to collect the data. The tools were divided into two sections: participant sociodemographic information and HIV sero-status data from a modified version of the study conducted in Cape Town, South Africa [Reference Adeola and Forbes21]. The supervisors were given the questionnaire for each study participant. Then, the participants themselves filled out the questionnaire, as directed by the supervisors and the principal investigators.
Data quality control
Training was provided to supervisors, and appropriate supervision was provided. A pre-test was conducted 2 weeks before the actual data collection using 5% of the sample size. The internal consistency of instruments in the pre-test data (questionnaire) was confirmed (Cronbach’s alpha = 0.86). Two professional experts (one from the English language and one from medicine) validated the tool. After the pre-test, some explanations were modified and re-edited. The collected data were checked for completeness, and some unclear statements were corrected.
Patient and public Involvement
No patients were involved in this study.
Data processing and analysis
Before analyzing the data, it was cleaned up and cross-checked. The data were entered into Epi Data version 4.6.0.4 and exported to SPSS version 26 for further analysis. A binary logistic regression model was used to estimate the associated factors of all independent variables with a p-value of <0.05. The model fitness of the variable was tested using the Hosmer–Lemeshow test. All independent variables with a p-value of <0.05 from a bivariate logistic regression analysis were considered for fitting into a multivariable logistic regression analysis to control for the possible effect of confounders. Descriptive statistics such as percentage, mean, median, and standard deviation were used. Tables, graphs, and narrations were used for data presentation.
Results
Sociodemographic characteristics of study participants
Of the 420 HCWs who participated in the study, which had a response rate of 99.5%, most of the 236 HCWs (56%) were female. Two hundred and fifty-five (62%) HCWs were between the ages of 20 and 29, with a mean age of 30.18 ± 4.37. Most study participants, 301 (72%), were nurses, and 278 (66%) had 1–9 years of work experience. More than half of the HCWs (246, or 58.5%) used personal protective equipment correctly (Table 1).
Human immune deficiency virus sero-status of healthcare workers
Of the 420 study participants who were exposed to blood and body fluids over the past 12 months, 403 (96%) were non-reactive, while 17 (4%) were reactive.
HIV sero-status of HCWs with their sociodemographic characteristics
In a chi-square test analysis with a p-value of <0.05, factors such as the proper use of personal protective equipment, educational status, and work experience were significantly associated with the post-exposure HIV sero-status of healthcare workers (Table 2).
* Significant at p-value <0.05.
Factors associated with the post-exposure HIV sero-status of healthcare workers
The goodness of fit of the variable using the Hosmer–Lemeshow test displayed that the dependent variable was explained by the independent variables by 89.6%. In a binary logistic regression analysis with a p-value of <0.05, factors such as the proper use of personal protective equipment, educational status, and work experience were significantly associated with the post-exposure HIV sero-status of healthcare workers. Healthcare workers who had 20–29 years of work experience had approximately six times higher odds of testing positive for HIV (AOR = 6.21, 95% CI: 2.39, 9.55). HCWs who were not using PPE properly had approximately five times more odds of testing positive for HIV (AOR = 5.02, 95% CI: 3.73, 9.51). HCWs who were midwives had approximately four times higher odds of testing positive for HIV (AOR = 4.2, 95% CI: 3.17, 8.21) (Table 3).
Note. 1:00: reference.
AOR, adjusted odd ratio; OR, crude odd ratio; NR, non-reactive; R, reactive.
* P-value < 0.005.
Discussion
This study found that the prevalence of HIV among HCWs’ post exposure to infected BBFs over the past 12 months was 17 (4%). This means that, although various technologies and prevention methods have been developed, HCWs are still at risk of contracting HIV in their workplaces. This is comparable with the study that was reported from South Africa (4%) [Reference Adeola and Forbes21], Tanzania (3%) [Reference Eyong, Ngwe, Nfuksai, Niba and Jane-Francis22], and Nigeria (4.2%) [Reference Tekalign, Awoke, Eshetu, Walle and Guta23].
However, the result is much higher than the studies conducted in Iran (1.7%) [Reference Levaillant, Lièvre and Baert24], Australia (2.1%) [Reference Ifeoma, Apalata, Aviwe, Oladimeji and Abaver25], Kenya (1.5%) [Reference Nagata, Miller, Cohen, Frongillo, Weke, Burger, Wekesa, Sheira, Mocello, Otieno, Butler, Bukusi, Weiser and Young26], and Tunisia (1.7%) [Reference Besbes, Nasri, Nafti and Bennasrallah27]. This discrepancy may be due to variation among the study participants, a lack of PPE, a higher patient load, and the infrequent use of PPE among participants in this study setting. For instance, in this study, HCWs infrequently used PPE due to its shortage in the COVID era [Reference Levaillant, Lièvre and Baert24–Reference Nagata, Miller, Cohen, Frongillo, Weke, Burger, Wekesa, Sheira, Mocello, Otieno, Butler, Bukusi, Weiser and Young26]. Additionally, there is a higher patient flow along with greater consumption of PPE in this study setting and in the country as a whole, which subsequently can lead to higher exposure to HIV.
In this study, healthcare workers who had 20–29 years of work experience had six times higher odds of testing positive for HIV (AOR = 6.21, 95% CI: 2.39, 9.55). HCWs who were not using PPE properly had five times more odds of testing positive for HIV (AOR = 5.02, 95% CI: 3.73, 9.51). HCWs who were midwives had four times higher odds of testing positive for HIV (AOR = 4.2, 95% CI: 3.17, 8.21). This is supported by many studies, such as those in Tunisia [Reference Besbes, Nasri, Nafti and Bennasrallah27], South Africa [Reference Adeola and Forbes21], and Kenya [Reference Nagata, Miller, Cohen, Frongillo, Weke, Burger, Wekesa, Sheira, Mocello, Otieno, Butler, Bukusi, Weiser and Young26]. The reason could be described as the availability of PPE in healthcare facilities, influencing HCWs’ habits of using PPE during patient care and procedures, thereby reducing exposure to HIV and its impact on the outcome of exposure. Furthermore, the infrequent availability of PPE reduced HCWs’ compliance to wearing PPE such as gloves, face masks, face shields, and aprons, potentially amplifying their exposure to HIV infection; and finally, increasing the transmission of blood-borne pathogens. Caring for patients without the use of proper PPE can also increase the risk of HIV infection due to exposure to contaminated BBFs and can lead to anxiety and further exposure to HIV infection [Reference Sahiledengle, Tekalegn, Woldeyohannes and Quisido13, Reference Mekonnin, Tsegaye, Berihun, Kassachew and Sileshi28].
Implications of the study
This study will be used to provide information to healthcare providers, non-governmental organisations, and policymakers for appropriate planning and interventions regarding HCWs’ exposure to HIV infection.
This study also provides new knowledge regarding occupational exposure to HIV infection among healthcare workers. Moreover, the results of this study serve as baseline data for further longitudinal and action-based studies.
Strength and limitations
As its strength, this study was conducted in five randomly selected public hospitals; thus, it could be generalised to all HCWs working in public hospitals. The data was collected using a self-administered questionnaire given to each participant; hence, it is susceptible to recall bias.
Conclusion
This study showed that a higher proportion of healthcare workers at the emergency department tested positive for the human immunodeficiency virus infection among those who were exposed to blood and body fluids and had been tested immediately. Healthcare workers who did not use personal protective equipment properly had higher odds of testing positive for the human imm/unodeficiency virus.
Abbreviations
- BBFs
Blood and body fluids
- ED
Emergency departments
- HBV
Hepatitis B virus
- HCV
Hepatitis C virus
- HCWs
Healthcare workers
- PPE
Personal protective equipment
- SPSS
Statistical Packages for Social Sciences
Data availability statement
The data that support the findings of this study are available upon reasonable request from the corresponding author.
Acknowledgments
The authors are grateful to the data collectors, emergency coordinators, and all study participants for their contributions to the study’s success.
Author contribution
O.A.T. developed the proposal, analyzed the data, and interpreted the results. A.A.A. drafted the manuscript, revised the proposal, checked the data, and revised the manuscript. The authors have read and approved the final manuscript.
Financial statement
No funding sources are available yet.
Competing interest
The authors declare none.
Ethical standard
The ethical review board of the College of Health Sciences at Addis Ababa University approved this study. No. 1239 edu.net for ethical approval. Certify that the study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.