Hostname: page-component-669899f699-rg895 Total loading time: 0 Render date: 2025-04-26T02:52:57.902Z Has data issue: false hasContentIssue false

The extraordinary “ordinary magic” of resilience

Published online by Cambridge University Press:  04 October 2024

Elena L. Grigorenko*
Affiliation:
University of Houston, Houston, TX, USA
*
Corresponding author: Elena L. Grigorenko; Email: [email protected]

Abstract

In this essay, I will briefly sample different instances of the utilization of the concept of resilience, attempting to complement a comprehensive representation of the field in the special issue of Development and Psychopathology inspired by the 42nd Minnesota Symposium on Child Psychology, hosted by the Institute of Child Development at the University of Minnesota and held in October of 2022. Having established the general context of the field, I will zoom in on some of its features, which I consider “low-hanging fruit” and which can be harvested in a systematic way to advance the study of resilience in the context of the future of developmental psychopathology.

Type
Special Issue Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aarts, E., Roelofs, A., Franke, B., Rijpkema, M., Fernández, G., Helmich, R. C., & Cools, R. (2010). Striatal dopamine mediates the interface between motivational and cognitive control in humans: evidence from genetic imaging. Neuropsychopharmacology, 35, 19431951. https://doi.org/10.1038/npp.2010.68 CrossRefGoogle ScholarPubMed
Alexander, N., Klucken, T., Koppe, G., Osinsky, R., Walter, B., Vaitl, D., Sammer, G., Stark, R., & Hennig, J. (2012). Interaction of the serotonin transporter-linked polymorphic region and environmental adversity: increased amygdala-hypothalamus connectivity as a potential mechanism linking neural and endocrine hyperreactivity. Biological Psychiatry, 72, 4956. https://doi.org/10.1016/j.biopsych.2012.01.030 CrossRefGoogle ScholarPubMed
Alia-Klein, N., Goldstein, R. Z., Tomasi, D., Woicik, P. A., Moeller, S. J., Williams, B., Craig, I. W., Telang, F., Biegon, A., Wang, G. J., Fowler, J. S., & Volkow, N. D. (2009). Neural mechanisms of anger regulation as a function of genetic risk for violence. Emotion, 9, 385396. https://doi.org/10.1037/a0015904 CrossRefGoogle ScholarPubMed
American Psychological Association. (2024). Resilience. Retrieved March 10 from https://www.apa.org/topics/resilience Google Scholar
Amico, F., Meisenzahl, E., Koutsouleris, N., Reiser, M., Möller, H.-J., & Frodl, T. (2011). Structural MRI correlates for vulnerability and resilience to major depressive disorder. Journal of Psychiatry and Neuroscience, 36, 1522. https://doi.org/10.1503/jpn.090186 CrossRefGoogle ScholarPubMed
Amstadter, A. B., Maes, H. H., Sheerin, C. M., Myers, J. M., & Kendler, K. S. (2016). The relationship between genetic and environmental influences on resilience and on common internalizing and externalizing psychiatric disorders. Social Psychiatry and Psychiatric Epidemiology, 51, 669678. https://doi.org/10.1007/s00127-015-1163-6 CrossRefGoogle ScholarPubMed
Anacker, C., Luna, V. M., Stevens, G. S., Millette, A., Shores, R., Jimenez, J. C., Chen, B., & Hen, R. (2018). Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus. Nature, 559, 98102. https://doi.org/10.1038/s41586-018-0262-4 CrossRefGoogle ScholarPubMed
Arnau-Soler, A., Macdonald-Dunlop, E., Adams, M. J., Clarke, T. K., MacIntyre, D. J., Milburn, K., Navrady, L., Hayward, C., McIntosh, A. M., & Thomson, P. A. (2019). Genome-wide by environment interaction studies of depressive symptoms and psychosocial stress in UK Biobank and Generation Scotland. Translational Psychiatry, 9, Article 14. https://doi.org/10.1038/s41398-018-0360-y CrossRefGoogle ScholarPubMed
Bagot, R. C., Parise, E. M., Peña, C. J., Zhang, H. X., Maze, I., Chaudhury, D., Persaud, B., Cachope, R., Bolaños-Guzmán, C. A., Cheer, J. F., Deisseroth, K., Han, M. H., & Nestler, E. J. (2015). Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression. Nature Communications, 6, 7062. https://doi.org/10.1038/ncomms8062 CrossRefGoogle Scholar
Baker, K. S., Mattingley, J. B., Chambers, C. D., & Cunnington, R. (2011). Attention and the readiness for action. Neuropsychologia, 49(12), 33033313. https://doi.org/10.1016/j.neuropsychologia.2011.08.003 CrossRefGoogle ScholarPubMed
Barzilay, R., Rosen, A. F. G., Moore, T. M., Roalf, D. R., Satterthwaite, T. D., Calkins, M. E., Ruparel, K., Patrick, A., Scott, J. C., Wolf, D. H., Gur, R. C., & Gur, R. E. (2020). Structural brain patterns associated with traumatic stress resilience and susceptibility to mood and anxiety symptoms in youths. Adversity and Resilience Science, 1, 179190. https://doi.org/10.1007/s42844-020-00014-6 CrossRefGoogle Scholar
Beckner, M. E., Conkright, W. R., Eagle, S. R., Martin, B. J., Sinnott, A. M., LaGoy, A. D., Proessl, F., Lovalekar, M., Jabloner, L. R., Roma, P. G., Basner, M., Ferrarelli, F., Germain, A., Flanagan, S. D., Connaboy, C., & Nindl, B. C. (2021). Impact of simulated military operational stress on executive function relative to trait resilience, aerobic fitness, and neuroendocrine biomarkers. Physiology & Behavior, 236, 113413. https://doi.org/10.1016/j.physbeh.2021.113413 CrossRefGoogle ScholarPubMed
Beckner, M. E., Main, L., Tait, J. L., Martin, B. J., Conkright, W. R., & Nindl, B. C. (2022). Circulating biomarkers associated with performance and resilience during military operational stress. European Journal of Sport Science, 22(1), 7286. https://doi.org/10.1080/17461391.2021.1962983 CrossRefGoogle ScholarPubMed
Binder, E. B. (2009). The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology, 34 (Suppl 1), S186S195. https://doi.org/10.1016/j.psyneuen.2009.05.021 CrossRefGoogle ScholarPubMed
Binder, E. B., Bradley, R. G., Liu, W., Epstein, M. P., Deveau, T. C., Mercer, K. B., Tang, Y., Gillespie, C. F., Heim, C. M., Nemeroff, C. B., Schwartz, A. C., Cubells, J. F., & Ressler, K. J. (2008). Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA, 299, 12911305. https://doi.org/10.1001/jama.299.11.1291 CrossRefGoogle ScholarPubMed
Bisley, J. W., & Goldberg, M. E. (2010). Attention, intention, and priority in the parietal lobe. Annual Review of Neuroscience, 33, 121. https://doi.org/10.1146/annurev-neuro-060909-152823 CrossRefGoogle ScholarPubMed
Boecker-Schlier, R., Holz, N. E., Buchmann, A. F., Blomeyer, D., Plichta, M. M., Jennen-Steinmetz, C., Wolf, I., Baumeister, S., Treutlein, J., Rietschel, M., Meyer-Lindenberg, A., Banaschewski, T., Brandeis, D., & Laucht, M. (2016). Interaction between COMT Val(158)Met polymorphism and childhood adversity affects reward processing in adulthood. Neuroimage, 132, 556570. https://doi.org/10.1016/j.neuroimage.2016.02.006 CrossRefGoogle ScholarPubMed
Boldrini, M., Galfalvy, H., Dwork, A. J., Rosoklija, G. B., Trencevska-Ivanovska, I., Pavlovski, G., Hen, R., Arango, V., & Mann, J. J. (2019). Resilience is associated with larger dentate gyrus, while suicide decedents with major depressive disorder have fewer granule neurons. Biological Psychiatry, 85(1), 850862. https://doi.org/10.1016/j.biopsych.2018.12.022 CrossRefGoogle ScholarPubMed
Boldrini, M., Santiago, A. N., Hen, R., Dwork, A. J., Rosoklija, G. B., Tamir, H., Arango, V., & Mann, J. J. (2013). Hippocampal granule neuron number and dentate gyrus volume in antidepressant-treated and untreated major depression. Neuropsychopharmacology, 38, 10681077. https://doi.org/10.1038/npp.2013.5 CrossRefGoogle ScholarPubMed
Boldrini, M., Underwood, M. D., Hen, R., Rosoklija, G. B., Dwork, A. J., John Mann, J., & Arango, V. (2009). Antidepressants increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology, 34, 23762389. https://doi.org/10.1038/npp.2009.75 CrossRefGoogle ScholarPubMed
Booth, C. K., Probert, B., Forbes-Ewan, C., & Coad, R. A. (2006). Australian army recruits in training display symptoms of overtraining. Military Medicine, 171, 10591064. https://doi.org/10.7205/milmed.171.11.1059 CrossRefGoogle ScholarPubMed
Bradley, B., Davis, T. A., Wingo, A. P., Mercer, K. B., & Ressler, K. J. (2013). Family environment and adult resilience: contributions of positive parenting and the oxytocin receptor gene. European Journal of Psychotraumatology, 4. https://doi.org/10.3402/ejpt.v4i0.21659 CrossRefGoogle ScholarPubMed
Braun, P. R., Han, S., Hing, B., Nagahama, Y., Gaul, L. N., Heinzman, J. T., Grossbach, A. J., Close, L., Dlouhy, B. J., Howard, M. A., Kawasaki, H., Potash, J. B., & Shinozaki, G. (2019). Genome-wide DNA methylation comparison between live human brain and peripheral tissues within individuals. Translational Psychiatry, 9, 47. https://doi.org/10.1038/s41398-019-0376-y CrossRefGoogle ScholarPubMed
Burt, K. B., Whelan, R., Conrod, P. J., Banaschewski, T., Barker, G. J., Bokde, A. L. W., Bromberg, U., Büchel, C., Fauth-Bühler, M., Flor, H., Galinowski, A., Gallinat, J., Gowland, P., Heinz, A., Ittermann, B., Mann, K., Nees, F., Papadopoulos-Orfanos, D., Paus, T., … Imagen Consortium, The. (2016). Structural brain correlates of adolescent resilience. Journal of Child Psychology and Psychiatry, 57(11), 12871296. https://doi.org/10.1111/jcpp.12552 CrossRefGoogle ScholarPubMed
Byrd, A. L., & Manuck, S. B. (2014). MAOA, childhood maltreatment, and antisocial behavior: Meta-analysis of a gene-environment interaction. Biological Psychiatry, 75, 917. https://doi.org/10.1016/j.biopsych.2013.05.004 CrossRefGoogle ScholarPubMed
Bzdok, D., Hartwigsen, G., Reid, A., Laird, A. R., Fox, P. T., & Eickhoff, S. B. (2016). Left inferior parietal lobe engagement in social cognition and language. Neuroscience & Biobehavioral Reviews, 68, 319334. https://doi.org/10.1016/j.neubiorev.2016.02.024 CrossRefGoogle ScholarPubMed
Camara, E., Krämer, U. M., Cunillera, T., Marco-Pallarés, J., Cucurell, D., Nager, W., Mestres-Missé, A., Bauer, P., Schüle, R., Schöls, L., Tempelmann, C., Rodriguez-Fornells, A., & Münte, T. F. (2010). The effects of COMT (Val108/158Met) and DRD4 (SNP-521) dopamine genotypes on brain activations related to valence and magnitude of rewards. Cerebral Cortex, 20, 19851996. https://doi.org/10.1093/cercor/bhp263 CrossRefGoogle Scholar
Canli, T., Qiu, M., Omura, K., Congdon, E., Haas, B. W., Amin, Z., Herrmann, M. J., Constable, R. T., & Lesch, K. P. (2006). Neural correlates of epigenesis. Proceedings of the National Academy of Sciences, 103, 1603316038. https://doi.org/10.1073/pnas.0601674103 CrossRefGoogle ScholarPubMed
Cao, H., Harneit, A., Walter, H., Erk, S., Braun, U., Moessnang, C., Geiger, L. S., Zang, Z., Mohnke, S., Heinz, A., Romanczuk-Seiferth, N., Mühleisen, T., Mattheisen, M., Witt, S. H., Cichon, S., Nöthen, M. M., Rietschel, M., Meyer-Lindenberg, A., & Tost, H. (2018). The 5-HTTLPR polymorphism affects network-based functional connectivity in the visual-limbic system in healthy adults. Neuropsychopharmacology, 43, 406414. https://doi.org/10.1038/npp.2017.121 CrossRefGoogle ScholarPubMed
Carlson, J. M., Dikecligil, G. N., Greenberg, T., & Mujica-Parodi, L. R. (2012). Trait reappraisal is associated with resilience to acute psychological stress. Journal of Research in Personality, 46, 609613. https://doi.org/10.1016/j.jrp.2012.05.003 CrossRefGoogle Scholar
Carnevali, L., Koenig, J., Sgoifo, A., & Ottaviani, C. (2018). Autonomic and brain morphological predictors of stress resilience. Frontiers in Neuroscience, 12. https://doi.org/10.3389/fnins.2018.00228 CrossRefGoogle ScholarPubMed
Carper, B., McGowan, D., Miller, S., Nelson, J., Palombi, L., Romeo, L., Spigelman, K., & Doryab, A. (2020). Modeling biological rhythms to predict mental and physical readiness. 2020 Systems and Information Engineering Design Symposium (SIEDS).CrossRefGoogle Scholar
Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., Taylor, A., & Poulton, R. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851854. https://doi.org/10.1126/science.1072290 CrossRefGoogle ScholarPubMed
Cathomas, F., Murrough, J. W., Nestler, E. J., Han, M. H., & Russo, S. J. (2019). Neurobiology of resilience: Interface between mind and body. Biological Psychiatry, 86, 410420. https://doi.org/10.1016/j.biopsych.2019.04.011 CrossRefGoogle ScholarPubMed
Charney, D. S. (2004). Psychobiological mechanisms of resilience and vulnerability: Implications for successful adaptation to extreme stress. American Journal of Psychiatry, 161, 195216. https://doi.org/10.1176/appi.ajp.161.2.195 CrossRefGoogle ScholarPubMed
Chen, D., Meng, L., Pei, F., Zheng, Y., & Leng, J. (2017). A review of DNA methylation in depression. Journal of Clinical Neuroscience, 43, 3946. https://doi.org/10.1016/j.jocn.2017.05.022 CrossRefGoogle ScholarPubMed
Chen, R. J., Kelly, G., Sengupta, A., Heydendael, W., Nicholas, B., Beltrami, S., Luz, S., Peixoto, L., Abel, T., & Bhatnagar, S. (2015). MicroRNAs as biomarkers of resilience or vulnerability to stress. Neuroscience, 305, 3648. https://doi.org/10.1016/j.neuroscience.2015.07.045 CrossRefGoogle ScholarPubMed
Chester, A. L., Edwards, A. M., Crowe, M., & Quirk, F. (2013). Physiological, biochemical, and psychological responses to environmental survival training in the Royal Australian Air Force. Military Medicine, 178, e829835. https://doi.org/10.7205/milmed-d-12-00499 CrossRefGoogle ScholarPubMed
Cicchetti, D. (2006). Development and psychopathology. In Cicchetti, D. & Cohen, D. (Eds.), Developmental psychopathology (2nd ed., Vol. 1. Theory and method, pp. 123). Wiley.Google Scholar
Cicchetti, D. (2010). Resilience under conditions of extreme stress: a multilevel perspective. World Psychiatry, 9, 145154. https://doi.org/10.1002/j.2051-5545.2010.tb00297.x CrossRefGoogle Scholar
Cicchetti, D. (2013). Annual Research Review: Resilient functioning in maltreated children – past, present, and future perspectives. Journal of Child Psychology and Psychiatry, 54, 402422. https://doi.org/10.1111/j.1469-7610.2012.02608.x CrossRefGoogle ScholarPubMed
Cicchetti, D., & Garmezy, N. (1993). Prospects and promises in the study of resilience. Development and Psychopathology, 5, 497502. https://doi.org/10.1017/S0954579400006118 CrossRefGoogle Scholar
Cicchetti, D., & Rogosch, F. A. (2007). Personality, adrenal steroid hormones, and resilience in maltreated children: A multilevel perspective. Development and Psychopathology, 19, 787809. https://doi.org/10.1017/S0954579407000399 CrossRefGoogle ScholarPubMed
Cicchetti, D., & Rogosch, F. A. (2012). Gene × Environment interaction and resilience: effects of child maltreatment and serotonin, corticotropin releasing hormone, dopamine, and oxytocin genes. Developmental Psychopathology, 24, 411427. https://doi.org/10.1017/s0954579412000077 CrossRefGoogle ScholarPubMed
Clamor, A., Lincoln, T. M., Thayer, J. F., & Koenig, J. (2016). Resting vagal activity in schizophrenia: Meta-analysis of heart rate variability as a potential endophenotype. British Journal of Psychiatry, 208, 916. https://doi.org/10.1192/bjp.bp.114.160762 CrossRefGoogle ScholarPubMed
Coan, J. A., Schaefer, H. S., & Davidson, R. J. (2006). Lending a hand: social regulation of the neural response to threat. Psychological Science, 17, 10321039. https://doi.org/10.1111/j.1467-9280.2006.01832.x CrossRefGoogle Scholar
Coleman, J. R., Peyrot, W. J., Purves, K. L., Davis, K. A. S., Rayner, C., Choi, S. W., Hübel, C., Gaspar, H. A., Kan, C., & Van der Auwera, S. (2020). Genome-wide gene-environment analyses of major depressive disorder and reported lifetime traumatic experiences in UK Biobank. Molecular Psychiatry, 25, 14301446.CrossRefGoogle ScholarPubMed
Cornwell, H., Toschi, N., Hamilton-Giachritsis, C., Staginnus, M., Smaragdi, A., Gonzalez-Madruga, K., Rogers, J., Martinelli, A., Kohls, G., Raschle, N. M., Konrad, K., Stadler, C., Freitag, C. M., De Brito, S., & Fairchild, G. (2023). Identifying structural brain markers of resilience to adversity in young people using voxel-based morphometry. Development and Psychopathology, 35, 23022314. https://doi.org/10.1017/S0954579423000718 CrossRefGoogle Scholar
Curtis, W. J., & Cicchetti, D. (2007). Emotion and resilience: A multilevel investigation of hemispheric electroencephalogram asymmetry and emotion regulation in maltreated and nonmaltreated children. Development and Psychopathology, 19, 811840. https://doi.org/10.1017/S0954579407000405 CrossRefGoogle ScholarPubMed
Cusack, S. E., Aliev, F., Bustamante, D., Dick, D. M., & Amstadter, A. B. (2023). A statistical genetic investigation of psychiatric resilience. European Journal of Psychotraumatology, 14, 2178762. https://doi.org/10.1080/20008066.2023.2178762 CrossRefGoogle ScholarPubMed
Cusack, S. E., Bountress, K. E., Sheerin, C. M., Spit for Science Work Group, Dick, D. M., & Amstadter, A. B. (2023). The longitudinal buffering effects of resilience on alcohol use outcomes. Psychological Trauma: Theory, Research, Practice, and Policy, 15, 10001011. https://doi.org/10.1037/tra0001156 CrossRefGoogle ScholarPubMed
Das, D., Cherbuin, N., Tan, X., Anstey, K. J., & Easteal, S. (2011). DRD4-exonIII-VNTR moderates the effect of childhood adversities on emotional resilience in young-adults. PLoS One, 6, e20177. https://doi.org/10.1371/journal.pone.0020177 CrossRefGoogle ScholarPubMed
Daskalakis, N. P., Cohen, H., Nievergelt, C. M., Baker, D. G., Buxbaum, J. D., Russo, S. J., & Yehuda, R. (2016). New translational perspectives for blood-based biomarkers of PTSD: From glucocorticoid to immune mediators of stress susceptibility. Experimental Neurology, 284, 133140. https://doi.org/10.1016/j.expneurol.2016.07.024 CrossRefGoogle ScholarPubMed
Dedovic, K., D’Aguiar, C., & Pruessner, J. C. (2009). What stress does to your brain: A review of neuroimaging studies. The Canadian Journal of Psychiatry, 54, 615. https://doi.org/10.1177/070674370905400104 CrossRefGoogle Scholar
Denckla, C. A., Cicchetti, D., Kubzansky, L. D., Seedat, S., Teicher, M. H., Williams, D. R., & Koenen, K. C. (2020). Psychological resilience: an update on definitions, a critical appraisal, and research recommendations. European Journal of Psychotraumatology, 11, 1822064. https://doi.org/10.1080/20008198.2020.1822064 CrossRefGoogle ScholarPubMed
Denny, W. B., Valentine, D. L., Reynolds, P. D., Smith, D. F., & Scammell, J. G. (2000). Squirrel monkey immunophilin FKBP51 is a potent inhibitor of glucocorticoid receptor binding. Endocrinology, 141, 41074113. https://doi.org/10.1210/endo.141.11.7785 CrossRefGoogle ScholarPubMed
Dolcos, S., Hu, Y., Iordan, A. D., Moore, M., & Dolcos, F. (2016). Optimism and the brain: trait optimism mediates the protective role of the orbitofrontal cortex gray matter volume against anxiety. Social Cognitive and Affective Neuroscience, 11, 263271. https://doi.org/10.1093/scan/nsv106 CrossRefGoogle ScholarPubMed
Dreher, J. C., Kohn, P., Kolachana, B., Weinberger, D. R., & Berman, K. F. (2009). Variation in dopamine genes influences responsivity of the human reward system. Proceedings of the National Academy of Sciences, 106, 617622. https://doi.org/10.1073/pnas.0805517106 CrossRefGoogle ScholarPubMed
Dreher, J. C., Meyer-Lindenberg, A., Kohn, P., & Berman, K. F. (2008). Age-related changes in midbrain dopaminergic regulation of the human reward system. Proceedings of the National Academy of Sciences, 105(3), 1510615111. https://doi.org/10.1073/pnas.0802127105 CrossRefGoogle ScholarPubMed
Dunlop, B. W., & Nemeroff, C. B. (2007). The role of dopamine in the pathophysiology of depression. Archives of General Psychiatry, 64, 327337. https://doi.org/10.1001/archpsyc.64.3.327 CrossRefGoogle ScholarPubMed
Dunn, E. C., Solovieff, N., Lowe, S. R., Gallagher, P. J., Chaponis, J., Rosand, J., Koenen, K. C., Waters, M. C., Rhodes, J. E., & Smoller, J. W. (2014). Interaction between genetic variants and exposure to Hurricane Katrina on post-traumatic stress and post-traumatic growth: a prospective analysis of low income adults. Journal of Affective Disorders, 152-154, 243249. https://doi.org/10.1016/j.jad.2013.09.018 CrossRefGoogle ScholarPubMed
Dunn, E. C., Wiste, A., Radmanesh, F., Almli, L. M., Gogarten, S. M., Sofer, T., Faul, J. D., Kardia, S. L. R., Smith, J. A., Weir, D. R., Zhao, W., Soare, T. W., Mirza, S. S., Hek, K., Tiemeier, H., Goveas, J. S., Sarto, G. E., Snively, B. M., Cornelis, M., … Smoller, J. W. (2016). Genome-wide association study (GWAS) and genome-wide by environment interaction study (GWEIS) of depressive symptoms in African-American and Hispanic/Latina women. Depression and Anxiety, 33, 265280. https://doi.org/10.1002/da.22484 CrossRefGoogle ScholarPubMed
Eaton, S., Cornwell, H., Hamilton-Giachritsis, C., & Fairchild, G. (2022). Resilience and young people’s brain structure, function and connectivity: A systematic review. Neuroscience & Biobehavioral Reviews, 132, 936956. https://doi.org/10.1016/j.neubiorev.2021.11.001 CrossRefGoogle Scholar
Eisenberger, N. I., Master, S. L., Inagaki, T. K., Taylor, S. E., Shirinyan, D., Lieberman, M. D., & Naliboff, B. D. (2011). Attachment figures activate a safety signal-related neural region and reduce pain experience. Proceedings of the National Academy of Sciences, 108, 1172111726. https://doi.org/10.1073/pnas.1108239108 CrossRefGoogle ScholarPubMed
Eisenberger, N. I., Taylor, S. E., Gable, S. L., Hilmert, C. J., & Lieberman, M. D. (2007). Neural pathways link social support to attenuated neuroendocrine stress responses. Neuroimage, 35, 16011612. https://doi.org/10.1016/j.neuroimage.2007.01.038 CrossRefGoogle ScholarPubMed
Elbau, I. G., Cruceanu, C., & Binder, E. B. (2019). Genetics of resilience: Gene-by-environment interaction studies as a tool to dissect mechanisms of resilience. Biological Psychiatry, 86, 433442. https://doi.org/10.1016/j.biopsych.2019.04.025 CrossRefGoogle ScholarPubMed
Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., Kim, J. S., Heo, S., Alves, H., White, S. M., Wojcicki, T. R., Mailey, E., Vieira, V. J., Martin, S. A., Pence, B. D., Woods, J. A., McAuley, E., & Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences, 108, 30173022. https://doi.org/10.1073/pnas.1015950108 CrossRefGoogle ScholarPubMed
Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences, 15, 8593. https://doi.org/10.1016/j.tics.2010.11.004 CrossRefGoogle ScholarPubMed
Etkin, A., & Wager, T. D. (2007). Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, Social Anxiety Disorder, and Specific Phobia. American Journal of Psychiatry, 164, 14761488. https://doi.org/10.1176/appi.ajp.2007.07030504 CrossRefGoogle ScholarPubMed
Fan, J., Fossella, J., Sommer, T., Wu, Y., & Posner, M. I. (2003). Mapping the genetic variation of executive attention onto brain activity. Proceedings of the National Academy of Sciences, 100, 74067411. https://doi.org/10.1073/pnas.0732088100 CrossRefGoogle ScholarPubMed
Farina, E. K., Thompson, L. A., Knapik, J. J., Pasiakos, S. M., McClung, J. P., & Lieberman, H. R. (2019). Physical performance, demographic, psychological, and physiological predictors of success in the U.S. Army Special Forces Assessment and Selection course. Physiology & Behavior, 210, 112647. https://doi.org/10.1016/j.physbeh.2019.112647 CrossRefGoogle ScholarPubMed
Feder, A., Fred-Torres, S., Southwick, S. M., & Charney, D. S. (2019). The biology of human resilience: Opportunities for enhancing resilience across the life span. Biological Psychiatry, 86, 443453. https://doi.org/10.1016/j.biopsych.2019.07.012 CrossRefGoogle ScholarPubMed
Feder, A., Nestler, E. J., & Charney, D. S. (2009). Psychobiology and molecular genetics of resilience. Nature Reviews Neuroscience, 10, 446457. https://doi.org/10.1038/nrn2649 CrossRefGoogle ScholarPubMed
Filbey, F. M., Ray, L., Smolen, A., Claus, E. D., Audette, A., & Hutchison, K. E. (2008). Differential neural response to alcohol priming and alcohol taste cues is associated with DRD4 VNTR and OPRM1 genotypes. Alcoholism: Clinical and Experimental Research, 32, 11131123. https://doi.org/10.1111/j.1530-0277.2008.00692.x CrossRefGoogle ScholarPubMed
Fink, G. (2017). Stress: Concepts, definition and history. In Reference Module in Neuroscience and Biobehavioral Psychology. Elsevier. /https://doi.org/10.1016/B978-0-12-809324-5.02208-2 Google Scholar
Fischer, A. S., Ellwood-Lowe, M. E., Colich, N. L., Cichocki, A., Ho, T. C., & Gotlib, I. H. (2019). Reward-circuit biomarkers of risk and resilience in adolescent depression. Journal of Affective Disorders, 246, 902909. https://doi.org/10.1016/j.jad.2018.12.104 CrossRefGoogle ScholarPubMed
Forbes, E. E., Brown, S. M., Kimak, M., Ferrell, R. E., Manuck, S. B., & Hariri, A. R. (2009). Genetic variation in components of dopamine neurotransmission impacts ventral striatal reactivity associated with impulsivity. Molecular Psychiatry, 14, 6070. https://doi.org/10.1038/sj.mp.4002086 CrossRefGoogle ScholarPubMed
Garmezy, N. (1971). Vulnerability research and the issue of primary prevention. American Journal of Orthopsychiatry, 41, 101116. https://doi.org/10.1111/j.1939-0025.1971.tb01111.x CrossRefGoogle ScholarPubMed
Garmezy, N. (1974). The study of competence in children at risk for severe psychopathology. In Anthony, E. J. & Koupernik, C. C. (Eds.), The child in his family: Children at psychiatric risk: III (pp. 7798). Wiley.Google Scholar
Garmezy, N. (1985). Competence and adaptation in adult schizophrenic patients and children at risk. In Cancro, R. & Dean, S. R. (Eds.), Research in the schizophrenic disorders: The Stanley R. Dean Award Lectures Vol. II (pp. 69112). Springer Netherlands. https://doi.org/10.1007/978-94-011-6338-5_3 CrossRefGoogle Scholar
Garmezy, N. (1992). Risk and protective factors in the development of psychopathology. Cambridge University Press.Google Scholar
Gepner, Y., Hoffman, J., Hoffman, M., Zelicha, H., Cohen, H., & Ostfeld, I. (2018). Association between circulating inflammatory markers and marksmanship following intense military training. Journal of the Royal Army Medical Corps, 165, jramc-2018. https://doi.org/10.1136/jramc-2018-001084 Google ScholarPubMed
Gillie, B. L., & Thayer, J. F. (2014). Individual differences in resting heart rate variability and cognitive control in posttraumatic stress disorder [Hypothesis and Theory]. Frontiers in Psychology, 5. https://doi.org/10.3389/fpsyg.2014.00758 CrossRefGoogle ScholarPubMed
González-García, N., Buimer, E. E. L., Moreno-López, L., Sallie, S. N., Váša, F., Lim, S., Romero-Garcia, R., Scheuplein, M., Whitaker, K. J., Jones, P. B., Dolan, R. J., Fonagy, P., Goodyer, I., Bullmore, E. T., & van Harmelen, A.-L. (2023). Resilient functioning is associated with altered structural brain network topology in adolescents exposed to childhood adversity. Development and Psychopathology, 35, 22532263. https://doi.org/10.1017/S0954579423000901 CrossRefGoogle ScholarPubMed
Grieder, M., Homan, P., Federspiel, A., Kiefer, C., & Hasler, G. (2020). Increased anxiety after stimulation of the right inferior parietal lobe and the left orbitofrontal cortex. Frontiers in Psychiatry, 11. https://doi.org/10.3389/fpsyt.2020.00375 CrossRefGoogle ScholarPubMed
Gupta, A., Love, A., Kilpatrick, L. A., Labus, J. S., Bhatt, R., Chang, L., Tillisch, K., Naliboff, B., & Mayer, E. A. (2017). Morphological brain measures of cortico-limbic inhibition related to resilience. Journal of Neuroscience Research, 95, 17601775. https://doi.org/10.1002/jnr.24007 CrossRefGoogle ScholarPubMed
Hahn, T., Heinzel, S., Dresler, T., Plichta, M. M., Renner, T. J., Markulin, F., Jakob, P. M., Lesch, K. P., & Fallgatter, A. J. (2011). Association between reward-related activation in the ventral striatum and trait reward sensitivity is moderated by dopamine transporter genotype. Human Brain Mapping, 32, 15571565. https://doi.org/10.1002/hbm.21127 CrossRefGoogle ScholarPubMed
Halldorsdottir, T., Piechaczek, C., Soares de Matos, A. P., Czamara, D., Pehl, V., Wagenbuechler, P., Feldmann, L., Quickenstedt-Reinhardt, P., Allgaier, A.-K., Freisleder, F. J., Greimel, E., Kvist, T., Lahti, J., Räikkönen, K., Rex-Haffner, M., Arnarson, E. Ö., Craighead, W. E., Schulte-Körne, G., & Binder, E. B. (2019). Polygenic Risk: Predicting depression outcomes in clinical and epidemiological cohorts of youths. American Journal of Psychiatry, 176, 615625. https://doi.org/10.1176/appi.ajp.2019.18091014 CrossRefGoogle ScholarPubMed
Hamarsland, H., Paulsen, G., Solberg, P. A., Slaathaug, O. G., & Raastad, T. (2018). Depressed physical performance outlasts hormonal disturbances after military training. Medicine & Science in Sports & Exercise, 50(10), 20762084. https://doi.org/10.1249/mss.0000000000001681 CrossRefGoogle ScholarPubMed
Handley, E. D., Duprey, E. B., Russotti, J., Levin, R. Y., & Warmingham, J. M. (2024). Person-centered methods to advance developmental psychopathology. Development and Psychopathology, 19. https://doi.org/10.1017/S0954579424000282 CrossRefGoogle ScholarPubMed
Handley, E. D., Rogosch, F. A., Duprey, E. B., Russotti, J., & Cicchetti, D. (2023). Profiles of diurnal cortisol and DHEA regulation among children: Associations with maltreatment experiences, symptomatology, and positive adaptation. Development and Psychopathology, 35, 16141626. https://doi.org/10.1017/S0954579422000335 CrossRefGoogle ScholarPubMed
Hänsel, A., & von Känel, R. (2008). The ventro-medial prefrontal cortex: a major link between the autonomic nervous system, regulation of emotion, and stress reactivity? Biopsychosocial Medicine, 2, 21. https://doi.org/10.1186/1751-0759-2-21 CrossRefGoogle Scholar
Hayes, L. D., Sculthorpe, N., Cunniffe, B., & Grace, F. (2016). Salivary testosterone and cortisol measurement in sports medicine: a narrative review and user’s guide for researchers and practitioners. International Journal of Sports Medicine, 37(13), 10071018. https://doi.org/10.1055/s-0042-105649 Google ScholarPubMed
Heils, A., Teufel, A., Petri, S., Stöber, G., Riederer, P., Bengel, D., & Lesch, K. P. (1996). Allelic variation of human serotonin transporter gene expression. Journal of Neurochemistry, 66, 26212624. https://doi.org/10.1046/j.1471-4159.1996.66062621.x CrossRefGoogle ScholarPubMed
Henning, P. C., Scofield, D. E., Spiering, B. A., Staab, J. S., Matheny, R. W. Jr, Smith, M. A., Bhasin, S., & Nindl, B. C. (2014). Recovery of endocrine and inflammatory mediators following an extended energy deficit. The Journal of Clinical Endocrinology & Metabolism, 99, 956964. https://doi.org/10.1210/jc.2013-3046 CrossRefGoogle ScholarPubMed
Herrman, H., Stewart, D. E., Diaz-Granados, N., Berger, E. L., Jackson, B., & Yuen, T. (2011). What is resilience? The Canadian Journal of Psychiatry, 56, 258265. https://doi.org/10.1177/070674371105600504 CrossRefGoogle ScholarPubMed
Herrmann, M. J., Woidich, E., Schreppel, T., Pauli, P., & Fallgatter, A. J. (2008). Brain activation for alertness measured with functional near infrared spectroscopy (fNIRS). Psychophysiology, 45(3), 480486. https://doi.org/10.1111/j.1469-8986.2007.00633.x CrossRefGoogle ScholarPubMed
Hess, J. L., Mattheisen, M., the Schizophrenia Working Group of the Psychiatric Genomics, C., Greenwood, T. A., Tsuang, M. T., Edenberg, H. J., Holmans, P., Faraone, S. V., & Glatt, S. J. (2024). A polygenic resilience score moderates the genetic risk for schizophrenia: Replication in 18,090 cases and 28,114 controls from the Psychiatric Genomics Consortium. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 195, e32957. https://doi.org/10.1002/ajmg.b.32957 CrossRefGoogle Scholar
Hess, J. L., Tylee, D. S., Mattheisen, M., Adolfsson, R., Agartz, I., Agerbo, E., Albus, M., Alexander, M., Amin, F., Andreassen, O. A., Arranz, M. J., Bacanu, S. A., Bakker, S., Band, G., Barroso, I., Begemann, M., Bellenguez, C., Belliveau, R. A., Bender, S., … Lundbeck Foundation Initiative for Integrative Psychiatric Research. (2021). A polygenic resilience score moderates the genetic risk for schizophrenia. Molecular Psychiatry, 26(3), 800815. https://doi.org/10.1038/s41380-019-0463-8 CrossRefGoogle ScholarPubMed
Hill, A. S., Sahay, A., & Hen, R. (2015). Increasing adult hippocampal neurogenesis is sufficient to reduce anxiety and depression-like behaviors. Neuropsychopharmacology, 40, 23682378. https://doi.org/10.1038/npp.2015.85 CrossRefGoogle ScholarPubMed
Hoexter, M. Q., Fadel, G., Felício, A. C., Calzavara, M. B., Batista, I. R., Reis, M. A., Shih, M. C., Pitman, R. K., Andreoli, S. B., Mello, M. F., Mari, J. J., & Bressan, R. A. (2012). Higher striatal dopamine transporter density in PTSD: an in vivo SPECT study with [99mTc]TRODAT-1. Psychopharmacology, 224, 337345. https://doi.org/10.1007/s00213-012-2755-4 CrossRefGoogle Scholar
Hoge, E. A., Bui, E., Palitz, S. A., Schwarz, N. R., Owens, M. E., Johnston, J. M., Pollack, M. H., & Simon, N. M. (2018). The effect of mindfulness meditation training on biological acute stress responses in generalized anxiety disorder. Psychiatry Research, 262, 328332. https://doi.org/10.1016/j.psychres.2017.01.006 CrossRefGoogle ScholarPubMed
Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4, 123.CrossRefGoogle Scholar
Holling, C. S. (1986). The resilience of terrestrial ecosystems: local surprise and global change. In Clark, W. C. & Munn, R. E. (Eds.), Sustainable development of the biosphere (pp. 292317). Cambridge University Press.Google Scholar
Holz, N. E., Boecker, R., Buchmann, A. F., Blomeyer, D., Baumeister, S., Hohmann, S., Jennen-Steinmetz, C., Wolf, I., Rietschel, M., Witt, S. H., Plichta, M. M., Meyer-Lindenberg, A., Schmidt, M. H., Esser, G., Banaschewski, T., Brandeis, D., & Laucht, M. (2016). Evidence for a sex-dependent MAOA× childhood stress interaction in the neural circuitry of aggression. Cerebral Cortex, 26, 904914. https://doi.org/10.1093/cercor/bhu249 CrossRefGoogle ScholarPubMed
Holz, N. E., Boecker, R., Jennen-Steinmetz, C., Buchmann, A. F., Blomeyer, D., Baumeister, S., Plichta, M. M., Esser, G., Schmidt, M., Meyer-Lindenberg, A., Banaschewski, T., Brandeis, D., & Laucht, M. (2016). Positive coping styles and perigenual ACC volume: two related mechanisms for conferring resilience? Social Cognitive and Affective Neuroscience, 11, 813820. https://doi.org/10.1093/scan/nsw005 CrossRefGoogle ScholarPubMed
Holz, N. E., Boecker-Schlier, R., Jennen-Steinmetz, C., Hohm, E., Buchmann, A. F., Blomeyer, D., Baumeister, S., Plichta, M. M., Esser, G., Schmidt, M., Meyer-Lindenberg, A., Banaschewski, T., Brandeis, D., & Laucht, M. (2018). Early maternal care may counteract familial liability for psychopathology in the reward circuitry. Social Cognitive and Affective Neuroscience, 13, 11911201. https://doi.org/10.1093/scan/nsy087 Google ScholarPubMed
Holz, N. E., Buchmann, A. F., Boecker, R., Blomeyer, D., Baumeister, S., Wolf, I., Rietschel, M., Witt, S. H., Plichta, M. M., Meyer-Lindenberg, A., Banaschewski, T., Brandeis, D., & Laucht, M. (2015). Role of FKBP5 in emotion processing: results on amygdala activity, connectivity and volume. Brain Structure and Function, 220(3), 13551368. https://doi.org/10.1007/s00429-014-0729-5 CrossRefGoogle ScholarPubMed
Holz, N. E., Tost, H., & Meyer-Lindenberg, A. (2020). Resilience and the brain: a key role for regulatory circuits linked to social stress and support. Molecular Psychiatry, 25, 379396. https://doi.org/10.1038/s41380-019-0551-9 CrossRefGoogle Scholar
Holz, N. E., Zohsel, K., Laucht, M., Banaschewski, T., Hohmann, S., & Brandeis, D. (2018). Gene x environment interactions in conduct disorder: Implications for future treatments. Neuroscience & Biobehavioral Reviews, 91, 239258. https://doi.org/10.1016/j.neubiorev.2016.08.017 CrossRefGoogle Scholar
Hoogman, M., Onnink, M., Cools, R., Aarts, E., Kan, C., Arias Vasquez, A., Buitelaar, J., & Franke, B. (2013). The dopamine transporter haplotype and reward-related striatal responses in adult ADHD. European Neuropsychopharmacology, 23, 469478. https://doi.org/10.1016/j.euroneuro.2012.05.011 CrossRefGoogle ScholarPubMed
Hopper, J. W., Frewen, P. A., van der Kolk, B. A., & Lanius, R. A. (2007). Neural correlates of reexperiencing, avoidance, and dissociation in PTSD: Symptom dimensions and emotion dysregulation in responses to script-driven trauma imagery. Journal of Traumatic Stress, 20, 713725. https://doi.org/10.1002/jts.20284 CrossRefGoogle ScholarPubMed
Hruschka, D. J., Kohrt, B. A., & Worthman, C. M. (2005). Estimating between- and within-individual variation in cortisol levels using multilevel models. Psychoneuroendocrinology, 30, 698714. https://doi.org/10.1016/j.psyneuen.2005.03.002 CrossRefGoogle ScholarPubMed
Hu, X. Z., Lipsky, R. H., Zhu, G., Akhtar, L. A., Taubman, J., Greenberg, B. D., Xu, K., Arnold, P. D., Richter, M. A., Kennedy, J. L., Murphy, D. L., & Goldman, D. (2006). Serotonin transporter promoter gain-of-function genotypes are linked to obsessive-compulsive disorder. American Journal of Human Genetics, 78, 815826. https://doi.org/10.1086/503850 CrossRefGoogle ScholarPubMed
Huang, Y., Coupland, N. J., Lebel, R. M., Carter, R., Seres, P., Wilman, A. H., & Malykhin, N. V. (2013). Structural changes in hippocampal subfields in major depressive disorder: A high-field magnetic resonance imaging study. Biological Psychiatry, 74(1), 6268. https://doi.org/10.1016/j.biopsych.2013.01.005 CrossRefGoogle ScholarPubMed
Ikeda, M., Shimasaki, A., Takahashi, A., Kondo, K., Saito, T., Kawase, K., Esaki, K., Otsuka, Y., Mano, K., Kubo, M., & Iwata, N. (2016). Genome-wide environment interaction between depressive state and stressful life events. Journal of Clinical Psychiatry, 77, e29e30. https://doi.org/10.4088/JCP.15l10127 CrossRefGoogle ScholarPubMed
Jagannathan, S. R., Ezquerro-Nassar, A., Jachs, B., Pustovaya, O. V., Bareham, C. A., & Bekinschtein, T. A. (2018). Tracking wakefulness as it fades: Micro-measures of alertness. NeuroImage, 176, 138151. https://doi.org/10.1016/j.neuroimage.2018.04.046 CrossRefGoogle ScholarPubMed
Jauny, G., Eustache, F., & Hinault, T. T. (2022). M/EEG dynamics underlying reserve, resilience, and maintenance in aging: A review. Frontiers in Psychology, 13, 861973. https://doi.org/10.3389/fpsyg.2022.861973 CrossRefGoogle ScholarPubMed
Jimenez, J. C., Su, K., Goldberg, A. R., Luna, V. M., Biane, J. S., Ordek, G., Zhou, P., Ong, S. K., Wright, M. A., Zweifel, L., Paninski, L., Hen, R., & Kheirbek, M. A. (2018). Anxiety cells in a hippocampal-hypothalamic circuit. Neuron, 97, 670683.e676. https://doi.org/10.1016/j.neuron.2018.01.016 CrossRefGoogle Scholar
Jung, T. P., Makeig, S., Stensmo, M., & Sejnowski, T. J. (1997). Estimating alertness from the EEG power spectrum. IEEE Transactions on Biomedical Engineering, 44(1), 6069. https://doi.org/10.1109/10.553713 CrossRefGoogle ScholarPubMed
Jürimäe, J., Mäestu, J., Jürimäe, T., Mangus, B., & von Duvillard, S. P. (2011). Peripheral signals of energy homeostasis as possible markers of training stress in athletes: a review. Metabolism, 60, 335350. https://doi.org/10.1016/j.metabol.2010.02.009 CrossRefGoogle ScholarPubMed
Kaufman, J., Cook, A., Arny, L., Jones, B., & Pittinsky, T. (1994). Problems defining resiliency: Illustrations from the study of maltreated children. Development and Psychopathology, 6, 215229. https://doi.org/10.1017/S0954579400005964 CrossRefGoogle Scholar
Kiser, D., Steemers, B., Branchi, I., & Homberg, J. R. (2012). The reciprocal interaction between serotonin and social behaviour. Neuroscience & Biobehavioral Reviews, 36(2), 786798. https://doi.org/10.1016/j.neubiorev.2011.12.009 CrossRefGoogle ScholarPubMed
Kong, F., Wang, X., Hu, S., & Liu, J. (2015). Neural correlates of psychological resilience and their relation to life satisfaction in a sample of healthy young adults. Neuroimage, 123, 165172. https://doi.org/10.1016/j.neuroimage.2015.08.020 CrossRefGoogle Scholar
Kudielka, B. M., Hellhammer, D. H., & Wüst, S. (2009). Why do we respond so differently? Reviewing determinants of human salivary cortisol responses to challenge. Psychoneuroendocrinology, 34, 218. https://doi.org/10.1016/j.psyneuen.2008.10.004 CrossRefGoogle ScholarPubMed
LaGoy, A. D., Cashmere, J. D., Beckner, M. E., Eagle, S. R., Sinnott, A. M., Conkright, W. R., Miller, E., Derrow, C., Dretsch, M. N., Flanagan, S. D., Nindl, B. C., Connaboy, C., Germain, A., & Ferrarelli, F. (2022). A trait of mind: stability and robustness of sleep across sleep opportunity manipulations during simulated military operational stress. Sleep, 45, 219. https://doi.org/10.1093/sleep/zsab219 CrossRefGoogle ScholarPubMed
Laucht, M., Esser, G., Baving, L., Gerhold, M., Hoesch, I., Ihle, W., Steigleider, P., Stock, B., Stoehr, R. M., Weindrich, D., & Schmidt, M. H. (2000). Behavioral sequelae of perinatal insults and early family adversity at 8 years of age. Journal of the American Academy of Child and Adolescent Psychiatry, 39, 12291237. https://doi.org/10.1097/00004583-200010000-00009 CrossRefGoogle ScholarPubMed
Lawler, J. M., Hruschak, J., Aho, K., Liu, Y., Ip, K. I., Lajiness-O’Neill, R., Rosenblum, K. L., Muzik, M., & Fitzgerald, K. D. (2021). The error-related negativity as a neuromarker of risk or resilience in young children. Brain Behavior, 11(3), e02008. https://doi.org/10.1002/brb3.2008 CrossRefGoogle ScholarPubMed
Ledford, A. K., Dixon, D., Luning, C. R., Martin, B. J., Miles, P. C., Beckner, M., Bennett, D., Conley, J., & Nindl, B. C. (2020). Psychological and physiological predictors of resilience in navy SEAL training. Behavioral Medicine, 46(3-4), 290301. https://doi.org/10.1080/08964289.2020.1712648 CrossRefGoogle ScholarPubMed
Lee, B. T., & Ham, B. J. (2008). Monoamine oxidase A-uVNTR genotype affects limbic brain activity in response to affective facial stimuli. NeuroReport, 19, 515519. https://doi.org/10.1097/WNR.0b013e3282f94294 CrossRefGoogle ScholarPubMed
Lee, Y., & Chun, C. (2021). Association between physiological signal from wearable device and alertness of office workers. SINTEF Procedings, Olso, Norway.Google Scholar
Lesch, K. P., Bengel, D., Heils, A., Sabol, S. Z., Greenberg, B. D., Petri, S., Benjamin, J., Müller, C. R., Hamer, D. H., & Murphy, D. L. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, 274, 15271531. https://doi.org/10.1126/science.274.5292.1527 CrossRefGoogle ScholarPubMed
Li, X., Wilder-Smith, C. H., Kan, M. E., Lu, J., Cao, Y., & Wong, R. K. (2014). Combat-training stress in soldiers increases S100B, a marker of increased blood-brain-barrier permeability, and induces immune activation. Neuro Enocrinology Letters, 35, 5863.Google ScholarPubMed
Lieberman, H. R., Bathalon, G. P., Falco, C. M., Kramer, F. M., Morgan, C. A., & Niro, P. J. (2005). Severe decrements in cognition function and mood induced by sleep loss, heat, dehydration, and undernutrition during simulated combat. Biological Psychiatry, 57, 422429. https://doi.org/10.1016/j.biopsych.2004.11.014 CrossRefGoogle ScholarPubMed
Lin, B., Hui, J., & Mao, H. (2021). Nanopore technology and its applications in gene sequencing. Biosensors (Basel), 11(7). https://doi.org/10.3390/bios11070214 Google ScholarPubMed
Lu, A. K.-M., Hsieh, S., Yang, C.-T., Wang, X.-Y., & Lin, S.-H. (2023). DNA methylation signature of psychological resilience in young adults: Constructing a methylation risk score using a machine learning method. Frontiers in Genetics, 13. https://doi.org/10.3389/fgene.2022.1046700 CrossRefGoogle Scholar
Luo, Q., Zou, Y., Nie, H., Wu, H., Du, Y., Chen, J., Li, Y., & Peng, H. (2023). Effects of childhood neglect on regional brain activity and corresponding functional connectivity in major depressive disorder and healthy people: Risk factor or resilience? Journal of Affective Disorders, 340, 792801. https://doi.org/10.1016/j.jad.2023.08.095 CrossRefGoogle ScholarPubMed
Luthar, S. S., & Cicchetti, D. (2000). The construct of resilience: Implications for interventions and social policies. Development and Psychopathology, 12, 857885. https://doi.org/10.1017/S0954579400004156 CrossRefGoogle ScholarPubMed
Lyons, L., ElBeltagy, M., Umka, J., Markwick, R., Startin, C., Bennett, G., & Wigmore, P. (2011). Fluoxetine reverses the memory impairment and reduction in proliferation and survival of hippocampal cells caused by methotrexate chemotherapy. Psychopharmacology, 215, 105115. https://doi.org/10.1007/s00213-010-2122-2 CrossRefGoogle ScholarPubMed
Ma, D. Y., Chang, W. H., Chi, M. H., Tsai, H. C., Yang, Y. K., & Chen, P. S. (2016). The correlation between perceived social support, cortisol and brain derived neurotrophic factor levels in healthy women. Psychiatry Research, 239, 149153. https://doi.org/10.1016/j.psychres.2016.03.019 CrossRefGoogle ScholarPubMed
Magwai, T., Shangase, K. B., Oginga, F. O., Chiliza, B., Mpofana, T., & Xulu, K. R. (2021). DNA methylation and schizophrenia: current literature and future perspective. Cells, 10, 2890.CrossRefGoogle ScholarPubMed
Maier, S. F., Amat, J., Baratta, M. V., Paul, E., & Watkins, L. R. (2006). Behavioral control, the medial prefrontal cortex, and resilience. Dialogues in Clinical Neuroscience, 8, 397406.CrossRefGoogle ScholarPubMed
Maier, S. F., & Watkins, L. R. (2010). Role of the medial prefrontal cortex in coping and resilience. Brain Research, 1355, 5260. https://doi.org/10.1016/j.brainres.2010.08.039 CrossRefGoogle ScholarPubMed
Main, L. C., Dawson, B., Heel, K., Grove, J. R., Landers, G. J., & Goodman, C. (2010). Relationship between inflammatory cytokines and self-report measures of training overload. 18, 127139. https://doi.org/10.1080/15438621003627133 CrossRefGoogle Scholar
Malberg, J. E., Eisch, A. J., Nestler, E. J., & Duman, R. S. (2000). Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. The Journal of Neuroscience, 20, 9104. https://doi.org/10.1523/JNEUROSCI.20-24-09104.2000 CrossRefGoogle ScholarPubMed
Masten, A. S. (2001). Ordinary magic: Resilience processes in development [Article]. American Psychologist, 56, 227238. https://doi.org/10.1037/0003-066X.56.3.227 CrossRefGoogle ScholarPubMed
Masten, A. S. (2007). Resilience in developing systems: Progress and promise as the fourth wave rises. Development and Psychopathology, 19, 921930.CrossRefGoogle Scholar
Masten, A. S., Lucke, C. M., Nelson, K. M., & Stallworthy, I. C. (2021). Resilience in development and psychopathology: Multisystem perspectives. Annual Review of Clinical Psychology, 17, 521549. https://doi.org/10.1146/annurev-clinpsy-081219-120307 CrossRefGoogle ScholarPubMed
Masten, A. S., & Tellegen, A. (2012). Resilience in developmental psychopathology: Contributions of the Project Competence Longitudinal Study. Development and Psychopathology, 24, 345361. https://doi.org/10.1017/S095457941200003X CrossRefGoogle ScholarPubMed
Masten, A. S., Tyrell, F. A., & Cicchetti, D. (2023). Resilience in development: Pathways to multisystem integration. Development and Psychopathology, 35(5), 21032112. https://doi.org/10.1017/S0954579423001293 CrossRefGoogle ScholarPubMed
Matosin, N., Halldorsdottir, T., & Binder, E. B. (2018). Understanding the molecular mechanisms underpinning gene by environment interactions in psychiatric disorders: The FKBP5 Model. Biological Psychiatry, 83, 821830. https://doi.org/10.1016/j.biopsych.2018.01.021 CrossRefGoogle ScholarPubMed
McClernon, F. J., Hutchison, K. E., Rose, J. E., & Kozink, R. V. (2007). DRD4 VNTR polymorphism is associated with transient fMRI-BOLD responses to smoking cues. Psychopharmacology, 194, 433441. https://doi.org/10.1007/s00213-007-0860-6 CrossRefGoogle ScholarPubMed
McEwen, B. S. (1998). Protective and damaging effects of stress mediators. New England Journal of Medicine, 338, 171179. https://doi.org/10.3389/fnhum.2018.00326 CrossRefGoogle ScholarPubMed
McEwen, B. S. (2012). The ever-changing brain: cellular and molecular mechanisms for the effects of stressful experiences. Developmental Neurobiology, 72, 878890. https://doi.org/10.1002/dneu.20968 CrossRefGoogle ScholarPubMed
McEwen, B. S. (2016). In pursuit of resilience: stress, epigenetics, and brain plasticity. Annals of the New York Academy of Sciences, 1373, 5664. https://doi.org/10.1111/nyas.13020 CrossRefGoogle ScholarPubMed
McKeown, A., Hai Bui, D., & Glenn, J. (2022). A social theory of resilience: The governance of vulnerability in crisis-era neoliberalism. European Journal of Cultural and Political Sociology, 9, 112132. https://doi.org/10.1080/23254823.2021.1997616 CrossRefGoogle Scholar
Mehta, D., Miller, O., Bruenig, D., David, G., & Shakespeare-Finch, J. (2020). A systematic review of DNA methylation and gene expression studies in posttraumatic stress disorder, posttraumatic growth, and resilience. Journal of Traumatic Stress, 33, 171180. https://doi.org/10.1002/jts.22472 CrossRefGoogle ScholarPubMed
Méndez Leal, A. S., & Silvers, J. A. (2021). Neurobiological markers of resilience to early-life adversity during adolescence. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 6, 238247. https://doi.org/10.1016/j.bpsc.2020.08.004 Google ScholarPubMed
Meyer-Lindenberg, A., Buckholtz, J. W., Kolachana, B., Hariri, A. R., Pezawas, L., Blasi, G., Wabnitz, A., Honea, R., Verchinski, B., Callicott, J. H., Egan, M., Mattay, V., & Weinberger, D. R. (2006). Neural mechanisms of genetic risk for impulsivity and violence in humans. Proceedings of the National Academy of Sciences, 103, 62696274. https://doi.org/10.1073/pnas.0511311103 CrossRefGoogle ScholarPubMed
Miller, O., Shakespeare-Finch, J., Bruenig, D., & Mehta, D. (2020). DNA methylation of NR3C1 and FKBP5 is associated with posttraumatic stress disorder, posttraumatic growth, and resilience. Psychological Trauma: Theory, Research, Practice, and Policy, 12, 750755. https://doi.org/10.1037/tra0000574 CrossRefGoogle ScholarPubMed
Moore, L. D., Le, T., & Fan, G. (2013). DNA methylation and its basic function. Neuropsychopharmacology, 38, 2338. https://doi.org/10.1038/npp.2012.112 CrossRefGoogle ScholarPubMed
Moreno-López, L., Ioannidis, K., Askelund, A. D., Smith, A. J., Schueler, K., & van Harmelen, A.-L. (2020). The resilient emotional brain: A scoping review of the medial prefrontal cortex and limbic structure and function in resilient adults with a history of childhood maltreatment. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 5, 392402. https://doi.org/10.1016/j.bpsc.2019.12.008 Google Scholar
Morey, R. A., Haswell, C. C., Hooper, S. R., & De Bellis, M. D. (2016). Amygdala, hippocampus, and ventral medial prefrontal cortex volumes differ in maltreated youth with and without chronic posttraumatic stress disorder. Neuropsychopharmacology, 41, 791801. https://doi.org/10.1038/npp.2015.205 CrossRefGoogle ScholarPubMed
Morgan, C. A., Rasmusson, A., Pietrzak, R. H., Coric, V., & Southwick, S. M. (2009). Relationships among plasma dehydroepiandrosterone and dehydroepiandrosterone sulfate, cortisol, symptoms of dissociation, and objective performance in humans exposed to underwater navigation stress. Biological Psychiatry, 66, 334340. https://doi.org/10.1016/j.biopsych.2009.04.004 CrossRefGoogle ScholarPubMed
Morgan, C. A., Southwick, S., Hazlett, G., Rasmusson, A., Hoyt, G., Zimolo, Z., & Charney, D. (2004). Relationships among plasma dehydroepiandrosterone sulfate and cortisol levels, symptoms of dissociation, and objective performance in humans exposed to acute stress. Archives of General Psychiatry, 61, 819825. https://doi.org/10.1001/archpsyc.61.8.819 CrossRefGoogle ScholarPubMed
Morgan, C. A., Wang, S., Mason, J., Southwick, S. M., Fox, P., Hazlett, G., Charney, D. S., & Greenfield, G. (2000). Hormone profiles in humans experiencing military survival training. Biological Psychiatry, 47, 891901. https://doi.org/10.1016/s0006-3223(99)00307-8 CrossRefGoogle ScholarPubMed
Morgan, C. A., Wang, S., Southwick, S. M., Rasmusson, A., Hazlett, G., Hauger, R. L., & Charney, D. S. (2000). Plasma neuropeptide-Y concentrations in humans exposed to military survival training. Biological Psychiatry, 47, 902909. https://doi.org/10.1016/S0006-3223(99)00239-5 CrossRefGoogle ScholarPubMed
Morgan, J. K., Shaw, D. S., & Forbes, E. E. (2014). Maternal depression and warmth during childhood predict age 20 neural response to reward. Journal of American Academy of Child and Adolescent Psychiatry, 53, 108117.e101. https://doi.org/10.1016/j.jaac.2013.10.003 CrossRefGoogle ScholarPubMed
Mullins, N., Power, R. A., Fisher, H. L., Hanscombe, K. B., Euesden, J., Iniesta, R., Levinson, D. F., Weissman, M. M., Potash, J. B., Shi, J., Uher, R., Cohen-Woods, S., Rivera, M., Jones, L., Jones, I., Craddock, N., Owen, M. J., Korszun, A., Craig, I. W., … Lewis, C. M. (2016). Polygenic interactions with environmental adversity in the aetiology of major depressive disorder. Psychological Medicine, 46, 759770. https://doi.org/10.1017/S0033291715002172 CrossRefGoogle ScholarPubMed
Munafò, M. R., Brown, S. M., & Hariri, A. R. (2008). Serotonin transporter (5-HTTLPR) genotype and amygdala activation: a meta-analysis. Biological Psychiatry, 63, 852857. https://doi.org/10.1016/j.biopsych.2007.08.016 CrossRefGoogle ScholarPubMed
Murrough, J. W., & Russo, S. J. (2019). The neurobiology of resilience: Complexity and hope. Biological Psychiatry, 86(6), 406409. https://doi.org/10.1016/j.biopsych.2019.07.016 CrossRefGoogle ScholarPubMed
Nederhof, E., Bouma, E. M., Riese, H., Laceulle, O. M., Ormel, J., & Oldehinkel, A. J. (2010). Evidence for plasticity genotypes in a gene-gene-environment interaction: the TRAILS study. Genes, Brain, and Behavior, 9, 968973. https://doi.org/10.1111/j.1601-183X.2010.00637.x CrossRefGoogle Scholar
Nes, L. S., & Segerstrom, S. C. (2006). Dispositional optimism and coping: a meta-analytic review. Personality and Social Psychology Review, 10, 235251. https://doi.org/10.1207/s15327957pspr1003_3 CrossRefGoogle ScholarPubMed
Niitsu, K., Rice, M. J., Houfek, J. F., Stoltenberg, S. F., Kupzyk, K. A., & Barron, C. R. (2018). A systematic review of genetic influence on Psychological Resilience. Biological Research for Nursing, 21, 6171. https://doi.org/10.1177/1099800418800396 CrossRefGoogle ScholarPubMed
Nikolova, Y. S., Ferrell, R. E., Manuck, S. B., & Hariri, A. R. (2011). Multilocus genetic profile for dopamine signaling predicts ventral striatum reactivity. Neuropsychopharmacology, 36, 19401947. https://doi.org/10.1038/npp.2011.82 CrossRefGoogle ScholarPubMed
Nishimi, K., Koenen, K. C., Coull, B. A., Segerstrom, S. C., Austin, S. B., & Kubzansky, L. D. (2022). Psychological resilience and diurnal salivary cortisol in young adulthood. Psychoneuroendocrinology, 140, 105736. https://doi.org/10.1016/j.psyneuen.2022.105736 CrossRefGoogle ScholarPubMed
Nuninga, J. O., Mandl, R. C. W., Boks, M. P., Bakker, S., Somers, M., Heringa, S. M., Nieuwdorp, W., Hoogduin, H., Kahn, R. S., Luijten, P., & Sommer, I. E. C. (2020). Volume increase in the dentate gyrus after electroconvulsive therapy in depressed patients as measured with 7T. Molecular Psychiatry, 25, 15591568. https://doi.org/10.1038/s41380-019-0392-6 CrossRefGoogle ScholarPubMed
O’Donohue, J. S., Mesagno, C., & O’Brien, B. (2021). How can stress resilience be monitored? A systematic review of measurement in humans. Current Psychology, 40, 28532876. https://doi.org/10.1007/s12144-019-00226-9 CrossRefGoogle Scholar
Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 9, 242249. https://doi.org/10.1016/j.tics.2005.03.010 CrossRefGoogle ScholarPubMed
Osório, C., Probert, T., Jones, E., Young, A. H., & Robbins, I. (2017). Adapting to stress: Understanding the neurobiology of resilience. Behavioral Medicine, 43, 307322. https://doi.org/10.1080/08964289.2016.1170661 CrossRefGoogle ScholarPubMed
Otowa, T., Kawamura, Y., Tsutsumi, A., Kawakami, N., Kan, C., Shimada, T., Umekage, T., Kasai, K., Tokunaga, K., & Sasaki, T. (2016). The first pilot genome-wide gene-environment study of depression in the Japanese population. PLoS One, 11, e0160823. https://doi.org/10.1371/journal.pone.0160823 CrossRefGoogle ScholarPubMed
Oura Team. (2024). Your Oura Readiness Score. ouraring.com/blog/readiness-score/ Google Scholar
Ozbay, F., Fitterling, H., Charney, D., & Southwick, S. (2008). Social support and resilience to stress across the life span: A neurobiologic framework. Current Psychiatry Reports, 10, 304310. https://doi.org/10.1007/s11920-008-0049-7 CrossRefGoogle ScholarPubMed
Padilla-Coreano, N., Bolkan, S. S., Pierce, G. M., Blackman, D. R., Hardin, W. D., Garcia-Garcia, A. L., Spellman, T. J., & Gordon, J. A. (2016). Direct ventral hippocampal-prefrontal input is required for anxiety-related neural activity and behavior. Neuron, 89, 857866. https://doi.org/10.1016/j.neuron.2016.01.011 CrossRefGoogle ScholarPubMed
Palmfeldt, J., Henningsen, K., Eriksen, S. A., Müller, H. K., & Wiborg, O. (2016). Protein biomarkers of susceptibility and resilience to stress in a rat model of depression. Molecular and Cellular Neuroscience, 74, 8795. https://doi.org/10.1016/j.mcn.2016.04.001 CrossRefGoogle Scholar
Paloyelis, Y., Mehta, M. A., Faraone, S. V., Asherson, P., & Kuntsi, J. (2012). Striatal sensitivity during reward processing in attention-deficit/hyperactivity disorder. Journal of American Academy of Child and Adolescent Psychiatry, 51, 722732.e729. https://doi.org/10.1016/j.jaac.2012.05.006 CrossRefGoogle ScholarPubMed
Passamonti, L., Cerasa, A., Gioia, M. C., Magariello, A., Muglia, M., Quattrone, A., & Fera, F. (2008). Genetically dependent modulation of serotonergic inactivation in the human prefrontal cortex. Neuroimage, 40, 12641273. https://doi.org/10.1016/j.neuroimage.2007.12.028 CrossRefGoogle ScholarPubMed
Passamonti, L., Fera, F., Magariello, A., Cerasa, A., Gioia, M. C., Muglia, M., Nicoletti, G., Gallo, O., Provinciali, L., & Quattrone, A. (2006). Monoamine oxidase-a genetic variations influence brain activity associated with inhibitory control: new insight into the neural correlates of impulsivity. Biological Psychiatry, 59, 334340. https://doi.org/10.1016/j.biopsych.2005.07.027 CrossRefGoogle ScholarPubMed
Perera, T. D., Dwork, A. J., Keegan, K. A., Thirumangalakudi, L., Lipira, C. M., Joyce, N., Lange, C., Higley, J. D., Rosoklija, G. B., Hen, R., Sackeim, H. A., & Coplan, J. D. (2011). Necessity of hippocampal neurogenesis for the therapeutic action of antidepressants in adult nonhuman primates. PLoS One, 6, e17600. https://doi.org/10.1371/journal.pone.0017600 CrossRefGoogle ScholarPubMed
Peres, J. F. P., Foerster, B., Santana, L. G., Fereira, M. D., Nasello, A. G., Savoia, M., Moreira-Almeida, A., & Lederman, H. (2011). Police officers under attack: Resilience implications of an fMRI study. Journal of Psychiatric Research, 45, 727734. https://doi.org/10.1016/j.jpsychires.2010.11.004 CrossRefGoogle ScholarPubMed
Peyrot, W. J., Van der Auwera, S., Milaneschi, Y., Dolan, C. V., Madden, P. A. F., Sullivan, P. F., Strohmaier, J., Ripke, S., Rietschel, M., Nivard, M. G., Mullins, N., Montgomery, G. W., Henders, A. K., Heat, A. C., Fisher, H. L., Dunn, E. C., Byrne, E. M., Air, T. A., Wray, N. R., … Penninx, B. W. J. H. (2018). Does childhood trauma moderate polygenic risk for depression? A meta-analysis of 5765 subjects from the Psychiatric Genomics Consortium. Biological Psychiatry, 84, 138147. https://doi.org/10.1016/j.biopsych.2017.09.009 CrossRefGoogle ScholarPubMed
Pezawas, L., Meyer-Lindenberg, A., Drabant, E. M., Verchinski, B. A., Munoz, K. E., Kolachana, B. S., Egan, M. F., Mattay, V. S., Hariri, A. R., & Weinberger, D. R. (2005). 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nature Neuroscience, 8, 828834. https://doi.org/10.1038/nn1463 CrossRefGoogle ScholarPubMed
Phan, K. L., Fitzgerald, D. A., Nathan, P. J., Moore, G. J., Uhde, T. W., & Tancer, M. E. (2005). Neural substrates for voluntary suppression of negative affect: A functional magnetic resonance imaging study. Biological Psychiatry, 57, 210219. https://doi.org/10.1016/j.biopsych.2004.10.030 CrossRefGoogle ScholarPubMed
Pitman, R. K., Rasmusson, A. M., Koenen, K. C., Shin, L. M., Orr, S. P., Gilbertson, M. W., Milad, M. R., & Liberzon, I. (2012). Biological studies of post-traumatic stress disorder. Nature Reviews Neuroscience, 13, 769787. https://doi.org/10.1038/nrn3339 CrossRefGoogle ScholarPubMed
Polusny, M. A., Marquardt, C. A., Campbell, E. H., Filetti, C. R., Noël, V. V., Disner, S. G., Schaefer, J. D., Davenport, N., Lissek, S., Noorbaloochi, S., Sponheim, S. R., & Erbes, C. R. (2021). Advancing research on mechanisms of resilience (ARMOR) longitudinal cohort study of new military recruits: results from a feasibility pilot study. Research in Human Development, 18, 212229. https://doi.org/10.1080/15427609.2021.1964898 CrossRefGoogle ScholarPubMed
Rakesh, G., Morey, R. A., Zannas, A. S., Malik, Z., Marx, C. E., Clausen, A. N., Kritzer, M. D., & Szabo, S. T. (2019). Resilience as a translational endpoint in the treatment of PTSD. Molecular Psychiatry, 24, 12681283. https://doi.org/10.1038/s41380-019-0383-7 CrossRefGoogle ScholarPubMed
Rauch, S. L., Shin, L. M., Segal, E., Pitman, R. K., Carson, M. A., McMullin, K., Whalen, P. J., & Makris, N. (2003). Selectively reduced regional cortical volumes in post-traumatic stress disorder. NeuroReport, 14, 913916. https://doi.org/10.1097/00001756-200305230-00002 Google ScholarPubMed
Rauch, S. L., Whalen, P. J., Shin, L. M., McInerney, S. C., Macklin, M. L., Lasko, N. B., Orr, S. P., & Pitman, R. K. (2000). Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder: a functional MRI study. Biological Psychiatry, 47, 769776. https://doi.org/10.1016/S0006-3223(00)00828-3 CrossRefGoogle ScholarPubMed
Reynaud, E., Guedj, E., Souville, M., Trousselard, M., Zendjidjian, X., El Khoury-Malhame, M., Fakra, E., Nazarian, B., Blin, O., Canini, F., & Khalfa, S. (2013). Relationship between emotional experience and resilience: An fMRI study in fire-fighters. Neuropsychologia, 51, 845849. https://doi.org/10.1016/j.neuropsychologia.2013.01.007 CrossRefGoogle ScholarPubMed
Riani, K., Papakostas, M., Kokash, H., Abouelenien, M., Burzo, M., & Mihalcea, R. (2020). Towards detecting levels of alertness in drivers using multiple modalities. Proceedings of the 13th ACM International Conference on PErvasive Technologies Related to Assistive Environments.CrossRefGoogle Scholar
Roddy, D. W., Farrell, C., Doolin, K., Roman, E., Tozzi, L., Frodl, T., O’Keane, V., & O’Hanlon, E. (2019). The hippocampus in depression: More than the sum of its parts? Advanced hippocampal substructure segmentation in depression. Biological Psychiatry, 85, 487497. https://doi.org/10.1016/j.biopsych.2018.08.021 CrossRefGoogle Scholar
Rodman, A. M., Jenness, J. L., Weissman, D. G., Pine, D. S., & McLaughlin, K. A. (2019). Neurobiological markers of resilience to depression following childhood maltreatment: The role of neural circuits supporting the cognitive control of emotion. Biological Psychiatry, 86, 464473. https://doi.org/10.1016/j.biopsych.2019.04.033 CrossRefGoogle ScholarPubMed
Rose, A. (2007). Economic resilience to natural and man-made disasters: Multidisciplinary origins and contextual dimensions. Environmental Hazards, 7, 383395.CrossRefGoogle Scholar
Runco, M. A. (2019). Big C versus little c creativity. In Encyclopedia of creativity, invention, innovation and entrepreneurship (pp. 13). Springer New York. https://doi.org/10.1007/978-1-4614-6616-1_200060-2 Google Scholar
Russo, S. J., Murrough, J. W., Han, M.-H., Charney, D. S., & Nestler, E. J. (2012). Neurobiology of resilience. Nature Neuroscience, 15(11), 14751484. https://doi.org/10.1038/nn.3234 CrossRefGoogle ScholarPubMed
Rutter, M. (2006). Implications of resilience concepts for scientific understanding. Annals of the New York Academy of Sciences, 1094, 112. https://doi.org/10.1196/annals.1376.002 CrossRefGoogle ScholarPubMed
Rutter, M. (2012). Resilience as a dynamic concept. Developmental Psychopathology, 24, 335344. https://doi.org/10.1017/s0954579412000028 CrossRefGoogle ScholarPubMed
Salehinejad, M. A., Nejati, V., & Derakhshan, M. (2017). Neural correlates of trait resiliency: Evidence from electrical stimulation of the dorsolateral prefrontal cortex (dLPFC) and orbitofrontal cortex (OFC). Personality and Individual Differences, 106, 209216. https://doi.org/10.1016/j.paid.2016.11.005 CrossRefGoogle Scholar
Schiele, M. A., & Domschke, K. (2018). Epigenetics at the crossroads between genes, environment and resilience in anxiety disorders. Genes, Brain and Behavior, 17, e12423. https://doi.org/10.1111/gbb.12423 CrossRefGoogle ScholarPubMed
Schmack, K., Schlagenhauf, F., Sterzer, P., Wrase, J., Beck, A., Dembler, T., Kalus, P., Puls, I., Sander, T., Heinz, A., & Gallinat, J. (2008). Catechol-O-methyltransferase val158met genotype influences neural processing of reward anticipation. Neuroimage, 42, 16311638. https://doi.org/10.1016/j.neuroimage.2008.06.019 CrossRefGoogle ScholarPubMed
Schneider, T. R., Lyons, J. B., & Khazon, S. (2013). Emotional intelligence and resilience. Personality and Individual Differences, 55, 909914. https://doi.org/10.1016/j.paid.2013.07.460 CrossRefGoogle Scholar
Shi, L., Sun, J., Wei, D., & Qiu, J. (2019). Recover from the adversity: functional connectivity basis of psychological resilience. Neuropsychologia, 122, 2027. https://doi.org/10.1016/j.neuropsychologia.2018.12.002 CrossRefGoogle ScholarPubMed
Shin, L. M., Bush, G., Milad, M. R., Lasko, N. B., Handwerger Brohawn, K., Hughes, K. C., Macklin, M. L., Gold, A. L., Karpf, R. D., Orr, S. P., Rauch, S. L., & Pitman, R. K. (2011). Exaggerated activation of dorsal anterior cingulate cortex during cognitive interference: A monozygotic twin study of Posttraumatic Stress Disorder. American Journal of Psychiatry, 168(9), 979985. https://doi.org/10.1176/appi.ajp.2011.09121812 CrossRefGoogle ScholarPubMed
Shin, L. M., & Liberzon, I. (2010). The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology, 35, 169191. https://doi.org/10.1038/npp.2009.83 CrossRefGoogle ScholarPubMed
Sinha, R., Lacadie, C. M., Constable, R. T., & Seo, D. (2016). Dynamic neural activity during stress signals resilient coping. Proceedings of the National Academy of Sciences, 113, 88378842. https://doi.org/10.1073/pnas.1600965113 CrossRefGoogle ScholarPubMed
Smeets, T. (2010). Autonomic and hypothalamic–pituitary–adrenal stress resilience: Impact of cardiac vagal tone. Biological Psychology, 84, 290295. https://doi.org/10.1016/j.biopsycho.2010.02.015 CrossRefGoogle ScholarPubMed
Smith, L. L. (2000). Cytokine hypothesis of overtraining: a physiological adaptation to excessive stress? Medicine & Science in Sports & Exercise, 32, 317331. https://doi.org/10.1097/00005768-200002000-00011 CrossRefGoogle ScholarPubMed
Southwick, S. M., & Charney, D. S. (2012). The science of resilience: implications for the prevention and treatment of depression. Science, 338(6103), 7982. https://doi.org/10.1126/science.1222942 CrossRefGoogle ScholarPubMed
Southwick, S. M., Vythilingam, M., & Charney, D. S. (2004). The psychobiology of depression and resilience to stress: Implications for prevention and treatment. Annual Review of Clinical Psychology, 1(1), 255291. https://doi.org/10.1146/annurev.clinpsy.1.102803.143948 CrossRefGoogle Scholar
Souza, G. G. L., Magalhães, L. N., Da Cruz, T. A. R., Mendonça-De-Souza, A. C. F., Duarte, A. F. A., Fischer, N. L., Souza, W. F., Coutinho, E. D. S. F., Vila, J., Gleiser, S., Figueira, I., & Volchan, E. (2013). Resting vagal control and resilience as predictors of cardiovascular allostasis in peacekeepers. Stress, 16, 377383. https://doi.org/10.3109/10253890.2013.767326 CrossRefGoogle ScholarPubMed
Stein, M. B., Choi, K. W., Jain, S., Campbell-Sills, L., Chen, C. Y., Gelernter, J., He, F., Heeringa, S. G., Maihofer, A. X., Nievergelt, C., Nock, M. K., Ripke, S., Sun, X., Kessler, R. C., Smoller, J. W., & Ursano, R. J. (2019). Genome-wide analyses of psychological resilience in U.S. Army soldiers. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 180, 310319. https://doi.org/10.1002/ajmg.b.32730 CrossRefGoogle ScholarPubMed
Sun, D., Haswell, C. C., Morey, R. A., & De Bellis, M. D. (2019). Brain structural covariance network centrality in maltreated youth with PTSD and in maltreated youth resilient to PTSD. Development and Psychopathology, 31, 557571. https://doi.org/10.1017/S0954579418000093 CrossRefGoogle ScholarPubMed
Suppli, N. P., Andersen, K. K., Agerbo, E., Rajagopal, V. M., Appadurai, V., Coleman, J. R. I., Breen, G., Bybjerg-Grauholm, J., Bækvad-Hansen, M., Pedersen, C. B., Pedersen, M. G., Thompson, W. K., Munk-Olsen, T., Benros, M. E., Als, T. D., Grove, J. R., Werge, T., Børglum, A. D., Hougaard, D. M., … Musliner, K. L. (2022). Genome-wide by environment interaction study of stressful life events and hospital-treated depression in the iPSYCH2012 sample. Biological Psychiatry Global Open Science, 2, 400410. https://doi.org/10.1016/j.bpsgos.2021.11.003 CrossRefGoogle ScholarPubMed
Suzuki, G., Tokuno, S., Nibuya, M., Ishida, T., Yamamoto, T., Mukai, Y., Mitani, K., Tsumatori, G., Scott, D. A., & Shimizu, K. (2014). Decreased plasma brain-derived neurotrophic factor and vascular endothelial growth factor concentrations during military training. PLoS One, 9, e89455. https://doi.org/10.1371/journal.pone.0089455 CrossRefGoogle ScholarPubMed
Szivak, T. K., Lee, E. C., Saenz, C., Flanagan, S. D., Focht, B. C., Volek, J. S., Maresh, C. M., & Kraemer, W. J. (2018). Adrenal stress and physical performance during military survival training. Aerospace Medicine and Human Performance, 89, 99107. https://doi.org/10.3357/AMHP.4831.2018 CrossRefGoogle ScholarPubMed
Takeuchi, H., Taki, Y., Nouchi, R., Hashizume, H., Sassa, Y., Sekiguchi, A., Kotozaki, Y., Nakagawa, S., Nagase, T., Miyauchi, C. M., & Kawashima, R. (2014). Anatomical correlates of quality of life: Evidence from voxel-based morphometry. Human Brain Mapping, 35, 18341846. https://doi.org/10.1002/hbm.22294 CrossRefGoogle ScholarPubMed
Tan, A., Costi, S., Morris, L. S., Van Dam, N. T., Kautz, M., Whitton, A. E., Friedman, A. K., Collins, K. A., Ahle, G., & Chadha, N. (2020). Effects of the KCNQ channel opener ezogabine on functional connectivity of the ventral striatum and clinical symptoms in patients with major depressive disorder. Molecular Psychiatry, 25, 13231333.CrossRefGoogle ScholarPubMed
Taylor, M. K., Sausen, K. P., Potterat, E. G., Mujica-Parodi, L. R., Reis, J. P., Markham, A. E., Padilla, G. A., & Taylor, D. L. (2007). Stressful military training: endocrine reactivity, performance, and psychological impact. Aviation, Space, and Environmental Medicine, 78, 11431149. https://doi.org/10.3357/asem.2151.2007 CrossRefGoogle ScholarPubMed
Thayer, J. F., Åhs, F., Fredrikson, M., Sollers, J. J., & Wager, T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neuroscience & Biobehavioral Reviews, 36, 747756. https://doi.org/10.1016/j.neubiorev.2011.11.009 CrossRefGoogle ScholarPubMed
Thompson, T. M., Sharfi, D., Lee, M., Yrigollen, C. M., Naumova, O. Y., & Grigorenko, E. L. (2013). Comparison of whole-genome DNA methylation patterns in whole blood, saliva, and lymphoblastoid cell lines. Behavior Genetics, 43, 168176. https://doi.org/10.1007/s10519-012-9579-1 CrossRefGoogle ScholarPubMed
Toni, N., & Schinder, A. F. (2016). Maturation and functional integration of new granule cells into the adult hippocampus. Cold Spring Harbor Perspectives in Biology, 8, a018903.CrossRefGoogle Scholar
Tost, H., Champagne, F. A., & Meyer-Lindenberg, A. (2015). Environmental influence in the brain, human welfare and mental health. Nature Neuroscience, 18, 14211431. https://doi.org/10.1038/nn.4108 CrossRefGoogle ScholarPubMed
Tunc-Ozcan, E., Peng, C.-Y., Zhu, Y., Dunlop, S. R., Contractor, A., & Kessler, J. A. (2019). Activating newborn neurons suppresses depression and anxiety-like behaviors. Nature Communications, 10, 3768.CrossRefGoogle ScholarPubMed
Tutunji, R., Kogias, N., Kapteijns, B., Krentz, M., Krause, F., Vassena, E., & Hermans, E. J. (2023). Detecting Prolonged Stress in Real Life Using Wearable Biosensors and Ecological Momentary Assessments: Naturalistic Experimental Study. Journal of Medical Internet Research, 25, e39995. https://doi.org/10.2196/39995 CrossRefGoogle ScholarPubMed
Urry, H. L., Nitschke, J. B., Dolski, I., Jackson, D. C., Dalton, K. M., Mueller, C. J., Rosenkranz, M. A., Ryff, C. D., Singer, B. H., & Davidson, R. J. (2004). Making a life worth living: Neural correlates of well-being. Psychological Science, 15, 367372. https://doi.org/10.1111/j.0956-7976.2004.00686.x CrossRefGoogle ScholarPubMed
Vaara, J. P., Eränen, L., Ojanen, T., Pihlainen, K., Nykänen, T., Kallinen, K., Heikkinen, R., & Kyröläinen, H. (2020). Can physiological and psychological factors predict dropout from intense 10-day winter military survival training? International Journal of Environmental Research and Public Health, 17(23), 9064.CrossRefGoogle ScholarPubMed
van der Werff, S. J. A., van den Berg, S. M., Pannekoek, J. N., Elzinga, B. M., & Van Der Wee, N. J. A. (2013). Neuroimaging resilience to stress: a review. Frontiers in Behavioral Neuroscience, 7, 39.CrossRefGoogle ScholarPubMed
van Dijk, M. T., Talati, A., Kashyap, P., Desai, K., Kelsall, N. C., Gameroff, M. J., Aw, N., Abraham, E., Cullen, B., Cha, J., Anacker, C., Weissman, M. M., & Posner, J. (2024). Dentate gyrus microstructure is associated with resilience after exposure to maternal stress across two human cohorts. Biological Psychiatry, 95, 2736. https://doi.org/10.1016/j.biopsych.2023.06.026 CrossRefGoogle ScholarPubMed
van Doeselaar, L., Stark, T., Mitra, S., Yang, H., Bordes, J., Stolwijk, L., Engelhardt, C., Kovarova, V., Narayan, S., Brix, L. M., Springer, M., Deussing, J. M., Lopez, J. P., Czisch, M., & Schmidt, M. V. (2023). Sex-specific and opposed effects of FKBP51 in glutamatergic and GABAergic neurons: Implications for stress susceptibility and resilience. Proceedings of the National Academy of Sciences, 120(23), e2300722120. https://doi.org/10.1073/pnas.2300722120 CrossRefGoogle ScholarPubMed
Van Praag, H., Kempermann, G., & Gage, F. H. (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience, 2, 266270. https://doi.org/10.1038/6368 CrossRefGoogle ScholarPubMed
Van Tol, H. H., Wu, C. M., Guan, H. C., Ohara, K., Bunzow, J. R., Civelli, O., Kennedy, J., Seeman, P., Niznik, H. B., & Jovanovic, V. (1992). Multiple dopamine D4 receptor variants in the human population. Nature, 358, 149152. https://doi.org/10.1038/358149a0 Google ScholarPubMed
van Winkel, M., Peeters, F., van Winkel, R., Kenis, G., Collip, D., Geschwind, N., Jacobs, N., Derom, C., Thiery, E., van Os, J., Myin-Germeys, I., & Wichers, M. (2014). Impact of variation in the BDNF gene on social stress sensitivity and the buffering impact of positive emotions: replication and extension of a gene-environment interaction. European Neuropsychopharmacology, 24(6), 930938. https://doi.org/10.1016/j.euroneuro.2014.02.005 CrossRefGoogle ScholarPubMed
VanZomeren-Dohm, A. A., Pitula, C. E., Koss, K. J., Thomas, K., & Gunnar, M. R. (2015). FKBP5 moderation of depressive symptoms in peer victimized, post-institutionalized children. Psychoneuroendocrinology, 51, 426430. https://doi.org/10.1016/j.psyneuen.2014.10.003 CrossRefGoogle Scholar
Veena, J., Srikumar, B. N., Raju, T. R., & Shankaranarayana Rao, B. S. (2009). Exposure to enriched environment restores the survival and differentiation of new born cells in the hippocampus and ameliorates depressive symptoms in chronically stressed rats. Neuroscience Letters, 455, 178182. https://doi.org/10.1016/j.neulet.2009.03.059 CrossRefGoogle ScholarPubMed
Villicaña, S., Castillo-Fernandez, J., Hannon, E., Christiansen, C., Tsai, P.-C., Maddock, J., Kuh, D., Suderman, M., Power, C., Relton, C., Ploubidis, G., Wong, A., Hardy, R., Goodman, A., Ong, K. K., & Bell, J. T. (2023). Genetic impacts on DNA methylation help elucidate regulatory genomic processes. Genome Biology, 24, 176. https://doi.org/10.1186/s13059-023-03011-x CrossRefGoogle ScholarPubMed
Wagner, A. D., Shannon, B. J., Kahn, I., & Buckner, R. L. (2005). Parietal lobe contributions to episodic memory retrieval. Trends in Cognitive Sciences, 9, 445453. https://doi.org/10.1016/j.tics.2005.07.001 CrossRefGoogle ScholarPubMed
Walker, F. R., Pfingst, K., Carnevali, L., Sgoifo, A., & Nalivaiko, E. (2017). In the search for integrative biomarker of resilience to psychological stress. Neuroscience & Biobehavioral Reviews, 74, 310320. https://doi.org/10.1016/j.neubiorev.2016.05.003 CrossRefGoogle ScholarPubMed
Wang, J. W., David, D. J., Monckton, J. E., Battaglia, F., & Hen, R. (2008). Chronic fluoxetine stimulates maturation and synaptic plasticity of adult-born hippocampal granule cells. The Journal of Neuroscience, 28, 13741384. https://doi.org/10.1523/jneurosci.3632-07.2008 CrossRefGoogle ScholarPubMed
Wang, Z., Neylan, T. C., Mueller, S. G., Lenoci, M., Truran, D., Marmar, C. R., Weiner, M. W., & Schuff, N. (2010). Magnetic resonance imaging of hippocampal subfields in posttraumatic stress disorder. Archives of General Psychiatry, 67, 296303. https://doi.org/10.1001/archgenpsychiatry.2009.205 CrossRefGoogle ScholarPubMed
Watanabe, N., & Takeda, M. (2022). Neurophysiological dynamics for psychological resilience: A view from the temporal axis. Neuroscience Research, 175, 5361. https://doi.org/10.1016/j.neures.2021.11.004 CrossRefGoogle ScholarPubMed
Waugh, C. E., Wager, T. D., Fredrickson, B. L., Noll, D. C., & Taylor, S. F. (2008). The neural correlates of trait resilience when anticipating and recovering from threat. Social Cognitive and Affective Neuroscience, 3, 322332. https://doi.org/10.1093/scan/nsn024 CrossRefGoogle ScholarPubMed
White, M. G., Bogdan, R., Fisher, P. M., Muñoz, K. E., Williamson, D. E., & Hariri, A. R. (2012). FKBP5 and emotional neglect interact to predict individual differences in amygdala reactivity. Genes, Brain and Behavior, 11, 869878. https://doi.org/10.1111/j.1601-183X.2012.00837.x CrossRefGoogle ScholarPubMed
Winkelmann, T., Thayer, J. F., Pohlack, S., Nees, F., Grimm, O., & Flor, H. (2017). Structural brain correlates of heart rate variability in a healthy young adult population. Brain Structure and Function, 222, 10611068. https://doi.org/10.1007/s00429-016-1185-1 CrossRefGoogle Scholar
Wittmann, B. C., Tan, G. C., Lisman, J. E., Dolan, R. J., & Düzel, E. (2013). DAT genotype modulates striatal processing and long-term memory for items associated with reward and punishment. Neuropsychologia, 51, 21842193. https://doi.org/10.1016/j.neuropsychologia.2013.07.018 CrossRefGoogle ScholarPubMed
Wochnik, G. M., Rüegg, J., Abel, G. A., Schmidt, U., Holsboer, F., & Rein, T. (2005). FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. Journal of Biological Chemistry, 280, 46094616. https://doi.org/10.1074/jbc.M407498200 CrossRefGoogle ScholarPubMed
Wood, S. K., & Bhatnagar, S. (2015). Resilience to the effects of social stress: Evidence from clinical and preclinical studies on the role of coping strategies. Neurobiology of Stress, 1, 164173.CrossRefGoogle Scholar
Wu, G., Feder, A., Cohen, H., Kim, J. J., Calderon, S., Charney, D. S., & Mathé, A. A. (2013). Understanding resilience. Frontiers in Behavioral Neuroscience, 7, 10. https://doi.org/10.3389/fnbeh.2013.00010 CrossRefGoogle ScholarPubMed
Yacubian, J., Sommer, T., Schroeder, K., Gläscher, J., Kalisch, R., Leuenberger, B., Braus, D. F., & Büchel, C. (2007). Gene-gene interaction associated with neural reward sensitivity. Proceedings of the National Academy of Sciences, 104, 81258130. https://doi.org/10.1073/pnas.0702029104 CrossRefGoogle ScholarPubMed
Yin, Y., Jin, C., Hu, X., Duan, L., Li, Z., Song, M., Chen, H., Feng, B., Jiang, T., Jin, H., Wong, C., Gong, Q., & Li, L. (2011). Altered resting-state functional connectivity of thalamus in earthquake-induced posttraumatic stress disorder: A functional magnetic resonance imaging study. Brain Research, 1411, 98107. https://doi.org/10.1016/j.brainres.2011.07.016 CrossRefGoogle ScholarPubMed
Younger, J., Aron, A., Parke, S., Chatterjee, N., & Mackey, S. (2010). Viewing pictures of a romantic partner reduces experimental pain: involvement of neural reward systems. PLoS One, 5, e13309. https://doi.org/10.1371/journal.pone.0013309 CrossRefGoogle ScholarPubMed
Zannas, A. S., Wiechmann, T., Gassen, N. C., & Binder, E. B. (2016). Gene-stress-epigenetic regulation of FKBP5: Clinical and translational implications. Neuropsychopharmacology, 41, 261274. https://doi.org/10.1038/npp.2015.235 CrossRefGoogle ScholarPubMed
Zhang, L., Rakesh, D., Cropley, V., & Whittle, S. (2023). Neurobiological correlates of resilience during childhood and adolescence – A systematic review. Clinical Psychology Review, 105, 102333. https://doi.org/10.1016/j.cpr.2023.102333 CrossRefGoogle ScholarPubMed