Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T22:28:26.417Z Has data issue: false hasContentIssue false

Scaling law of structure function of Richtmyer–Meshkov turbulence

Published online by Cambridge University Press:  29 September 2023

Zhangbo Zhou
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Juchun Ding*
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Wan Cheng
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Xisheng Luo
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
*
Email address for correspondence: [email protected]

Abstract

The scaling law of the structure function of Richtmyer–Meshkov (RM) turbulence is investigated both numerically and theoretically. High-fidelity simulations with a minimum-dispersion, adaptive-dissipation scheme are first performed. Results show that the mixing width experiences an exponential growth and the turbulent kinetic energy has a visible $-3/2$ spectrum. The scalar field exhibits a greater degree of intermittency than the velocity field, and also the small-scale statistics suffer a larger influence of large scales. Visible differences in the scaling law of the structure function among the RM turbulence and other types of turbulence are observed, which reveal the unique characteristic of RM turbulence. A phenomenological theory, which gives the spatial and temporal scaling laws of the structure functions of velocity and scalar of RM turbulence, is developed for the first time by introducing an external agent. The spatial scaling exponents of structure functions from simulation deviate from the Kolmogorov exponents, but are quite close to the RM-modified anomalous exponents. This demonstrates the validity of the present phenomenological theory. The temporal scaling exponents of structure functions first meet the RM-modified anomalous exponents, and then approach the Kolmogorov–Obukhov–Corrsin non-intermittent ones.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abarzhi, S.I., Bhowmick, A.K., Naveh, A., Pandian, A., Swisher, N.C., Stellingwerf, R.F. & Arnett, W.D. 2019 Supernova, nuclear synthesis, fluid instabilities, and interfacial mixing. Proc. Natl Acad. Sci. USA 116 (37), 1818418192.CrossRefGoogle ScholarPubMed
Abgrall, R. & Karni, S. 2001 Computations of compressible multifluids. J. Comput. Phys. 169, 594623.CrossRefGoogle Scholar
Benzi, R. & Biferale, L. 2015 Homogeneous and isotropic turbulence: a short survey on recent developments. J. Stat. Phys. 161, 13511365.CrossRefGoogle Scholar
Benzi, R., Ciliberto, S., Baudet, C. & Chavarria, G.R. 1995 On the scaling of three-dimensional homogeneous and isotropic turbulence. Physica D 80 (4), 385398.CrossRefGoogle Scholar
Boffetta, G., Mazzino, A., Musacchio, S. & Vozella, L. 2010 Statistics of mixing in three–dimensional Rayleigh–Taylor turbulence at low Atwood number and Prandtl number one. Phys. Fluids 22 (3), 035109.CrossRefGoogle Scholar
Casner, A. 2021 Recent progress in quantifying hydrodynamics instabilities and turbulence in inertial confinement fusion and high-energy-density experiments. Phil. Trans. R. Soc. Lond. A 379 (2189), 20200021.Google ScholarPubMed
Chertkov, M. 2003 Phenomenology of Rayleigh–Taylor turbulence. Phys. Rev. Lett. 91, 115001.CrossRefGoogle ScholarPubMed
Cohen, R.H., Dannevik, W.P., Dimits, A.M., Eliason, D.E., Mirin, A.A., Zhou, Y., Porter, D.H. & Woodward, P.R. 2002 Three-dimensional simulation of a Richtmyer–Meshkov instability with a two-scale initial perturbation. Phys. Fluids 14 (10), 36923709.CrossRefGoogle Scholar
Corrsin, S. 1951 On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys. 22 (4), 469473.CrossRefGoogle Scholar
Deng, X.G. & Zhang, H.X. 2000 Developing high-order weighted compact nonlinear schemes. J. Comput. Phys. 165 (1), 2244.CrossRefGoogle Scholar
Dimonte, G., Youngs, D.L., Dimits, A., Weber, S., Marinak, M., Wunsch, S., Garasi, C., Robinson, A., Andrews, M.J., Ramaprabhu, P., et al. 2004 A comparative study of the turbulent Rayleigh–Taylor instability using high-resolution three-dimensional numerical simulations: the Alpha-Group collaboration. Phys. Fluids 16 (5), 16681693.CrossRefGoogle Scholar
Ding, J., Liang, Y., Chen, M., Zhai, Z., Si, T. & Luo, X. 2018 Interaction of planar shock wave with three-dimensional heavy cylindrical bubble. Phys. Fluids 30 (10), 106109.CrossRefGoogle Scholar
Ding, J., Si, T., Chen, M., Zhai, Z., Lu, X. & Luo, X. 2017 On the interaction of a planar shock with a three-dimensional light gas cylinder. J. Fluid Mech. 828, 289317.CrossRefGoogle Scholar
Elbaz, Y. & Shvarts, D. 2018 Modal model mean field self-similar solutions to the asymptotic evolution of Rayleigh–Taylor and Richtmyer–Meshkov instabilities and its dependence on the initial conditions. Phys. Plasmas 25 (6), 062126.CrossRefGoogle Scholar
Feng, L., Xu, J., Zhai, Z. & Luo, X. 2021 Evolution of shock-accelerated double-layer gas cylinder. Phys. Fluids 33 (8), 086105.CrossRefGoogle Scholar
Gotoh, T., Watanabe, T. & Suzuki, Y. 2011 Universality and anisotropy in passive scalar fluctuations in turbulence with uniform mean gradient. J. Turbul. 12, N48.CrossRefGoogle Scholar
Gotoh, T. & Yeung, P.K. 2012 Passive Scalar Transport in Turbulence: A Computational Perspective, pp. 87131. Cambridge University Press.Google Scholar
Grinstein, F.F., Gowardhan, A.A. & Wachtor, A.J. 2011 Simulations of Richtmyer–Meshkov instabilities in planar shock-tube experiments. Phys. Fluids 23 (3), 2931.CrossRefGoogle Scholar
Groom, M. & Thornber, B. 2019 Direct numerical simulation of the multimode narrowband Richtmyer–Meshkov instability. Comput. Fluids 194, 104309.CrossRefGoogle Scholar
Groom, M. & Thornber, B. 2020 The influence of initial perturbation power spectra on the growth of a turbulent mixing layer induced by Richtmyer–Meshkov instability. Physica D 407, 132463.CrossRefGoogle Scholar
Groom, M. & Thornber, B. 2021 Reynolds number dependence of turbulence induced by the Richtmyer–Meshkov instability using direct numerical simulations. J. Fluid Mech. 908, A31.CrossRefGoogle Scholar
Hill, D.J., Pantano, C. & Pullin, D.I. 2006 Large-eddy simulation and multiscale modelling of a Richtmyer–Meshkov instability with reshock. J. Fluid Mech. 557, 2961.CrossRefGoogle Scholar
Jiang, G.S. & Shu, C.W. 1996 Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126 (1), 202228.CrossRefGoogle Scholar
Kolmogorov, A.N. 1941 a Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 16.Google Scholar
Kolmogorov, A.N. 1941 b The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301305.Google Scholar
Li, H., He, Z., Zhang, Y. & Tian, B. 2019 On the role of rarefaction/compression waves in Richtmyer–Meshkov instability with reshock. Phys. Fluids 31 (5), 054102.Google Scholar
Li, J., Ding, J., Luo, X. & Zou, L. 2022 Instability of a heavy gas layer induced by a cylindrical convergent shock. Phys. Fluids 34 (4), 042123.CrossRefGoogle Scholar
Liu, H. & Xiao, Z. 2016 Scale-to-scale energy transfer in mixing flow induced by the Richtmyer–Meshkov instability. Phys. Rev. E 93, 053112.CrossRefGoogle ScholarPubMed
Lombardini, M., Pullin, D.I. & Meiron, D.I. 2012 Transition to turbulence in shock-driven mixing: a Mach number study. J. Fluid Mech. 690, 203226.CrossRefGoogle Scholar
Meshkov, E.E. 1969 Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4, 101104.CrossRefGoogle Scholar
Mikaelian, K.O. 1989 Turbulent mixing generated by Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Physica D 36, 343357.CrossRefGoogle Scholar
Mohaghar, M., Carter, J., Musci, B., Reilly, D., McFarland, J. & Ranjan, D. 2017 Evaluation of turbulent mixing transition in a shock-driven variable-density flow. J. Fluid Mech. 831, 779825.CrossRefGoogle Scholar
Mohaghar, M., Carter, J., Pathikonda, G. & Ranjan, D. 2019 The transition to turbulence in shock-driven mixing: effects of mach number and initial conditions. J. Fluid Mech. 871, 595635.CrossRefGoogle Scholar
Moin, P. & Mahesh, K. 1998 Direct numerical simulation: a tool in turbulence research. Annu. Rev. Fluid Mech. 30 (1), 539578.CrossRefGoogle Scholar
Noble, C.D., Herzog, J.M., Rothamer, D.A., Ames, A.M., Oakley, J. & Bonazza, R. 2020 Scalar power spectra and scalar structure function evolution in the Richtmyer–Meshkov instability upon reshock. Trans. ASME J. Fluids Engng 142 (12), 121102.CrossRefGoogle Scholar
Obukhov, A.M. 1949 Structure of the temperature field in turbulent flows. Izv. Acad. Nauk SSSR Geogr. Geofiz 13, 5869.Google Scholar
Oggian, T., Drikakis, D., Youngs, D.L. & Williams, R.J.R. 2015 Computing multi–mode shock-induced compressible turbulent mixing at late times. J. Fluid Mech. 779, 411431.CrossRefGoogle Scholar
Olmstead, D., Wayne, P., Simons, D., Trueba Monje, I., Yoo, J.H., Kumar, S., Truman, C.R. & Vorobieff, P. 2017 Shock-driven transition to turbulence: emergence of power-law scaling. Phys. Rev. Fluids 2, 052601.CrossRefGoogle Scholar
Pan, L. & Scannapieco, E. 2011 Passive scalar structures in supersonic turbulence. Phys. Rev. E 83, 045302.CrossRefGoogle ScholarPubMed
Pirozzoli, S. 2006 On the spectral properties of shock-capturing schemes. J. Comput. Phys. 219 (2), 489497.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Reese, D.T., Ames, A.M., Noble, C.D., Oakley, J.G., Rothamer, D.A. & Bonazza, R. 2018 Simultaneous direct measurements of concentration and velocity in the Richtmyer–Meshkov instability. J. Fluid Mech. 849, 541575.CrossRefGoogle Scholar
Richtmyer, R.D. 1960 Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Maths 13, 297319.CrossRefGoogle Scholar
She, Z.-S. & Leveque, E. 1994 Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 72, 336339.CrossRefGoogle ScholarPubMed
She, Z.-S., Ren, K., Lewis, G.S. & Swinney, H.L. 2001 Scalings and structures in turbulent Couette–Taylor flow. Phys. Rev. E 64, 016308.CrossRefGoogle ScholarPubMed
Soulard, O., Guillois, F., Griffond, J., Sabelnikov, V. & Simoëns, S. 2018 Permanence of large eddies in Richtmyer–Meshkov turbulence with a small Atwood number. Phys. Rev. Fluids 3, 104603.CrossRefGoogle Scholar
Sreenivasan, K.R. 2019 Turbulent mixing: a perspective. Proc. Natl Acad. Sci. USA 116 (37), 1817518183.CrossRefGoogle ScholarPubMed
Sun, Z.S., Ren, Y.X., Larricq, C., Zhang, S.Y. & Yang, Y.C. 2011 A class of finite difference schemes with low dispersion and controllable dissipation for DNS of compressible turbulence. J. Comput. Phys. 230 (12), 46164635.CrossRefGoogle Scholar
Tam, C.K. & Webb, J.C. 1993 Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comput. Phys. 107, 262281.CrossRefGoogle Scholar
Taylor, G. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. Lond. A 201, 192196.Google Scholar
Thornber, B., Drikakis, D., Youngs, D.L. & Williams, R.J.R. 2010 The influence of initial condition on turbulent mixing due to Richtmyer–Meshkov instability. J. Fluid Mech. 654, 99139.CrossRefGoogle Scholar
Thornber, B., Griffond, J., Poujade, O., Attal, N., Varshochi, H., Bigdelou, P., Ramaprabhu, P., Olson, B., Greenough, J., Zhou, Y., et al. 2017 Late-time growth rate, mixing, and anisotropy in the multimode narrowband Richtmyer–Meshkov instability: the $\theta$-group collaboration. Phys. Fluids 29 (10), 105107.CrossRefGoogle Scholar
Tomkins, C.D., Balakumar, B.J., Orlicz, G., Prestridge, K.P. & Ristorcelli, J.R. 2013 Evolution of the density self-correlation in developing Richtmyer–Meshkov turbulence. J. Fluid Mech. 735, 288306.CrossRefGoogle Scholar
Tritschler, V.K., Olson, B.J., Lele, S.K., Hickel, S., Hu, X.Y. & Adams, N.A. 2014 a On the Richtmyer–Meshkov instability evolving from a deterministic multimode planar interface. J. Fluid Mech. 755, 429462.CrossRefGoogle Scholar
Tritschler, V.K, Zubel, M., Hickel, S. & Adams, N.A. 2014 b Evolution of length scales and statistics of Richtmyer–Meshkov instability from direct numerical simulations. Phys. Rev. E 90, 063001.CrossRefGoogle ScholarPubMed
Vorobieff, P., Mohamed, N.-G., Tomkins, C., Goodenough, C., Marr-Lyon, M. & Benjamin, R.F. 2003 Scaling evolution in shock-induced transition to turbulence. Phys. Rev. E 68, 065301.CrossRefGoogle ScholarPubMed
Vorobieff, P., Rightley, P.M. & Benjamin, R.F. 1998 Power-law spectra of incipient gas-curtain turbulence. Phys. Rev. Lett. 81, 22402243.CrossRefGoogle Scholar
Walchli, B. & Thornber, B. 2017 Reynolds number effects on the single-mode Richtmyer–Meshkov instability. Phys. Rev. E 95, 013104.CrossRefGoogle ScholarPubMed
Watanabe, T. & Gotoh, T. 2004 Statistics of a passive scalar in homogeneous turbulence. New J. Phys. 6 (1), 40.CrossRefGoogle Scholar
Weber, C., Haehn, N., Oakley, J., Rothamer, D. & Bonazza, R. 2012 Turbulent mixing measurements in the Richtmyer–Meshkov instability. Phys. Fluids 24, 074105.CrossRefGoogle Scholar
Wong, M.L., Baltzer, J.R., Livescu, D. & Lele, S.K. 2022 Analysis of second moments and their budgets for Richtmyer–Meshkov instability and variable-density turbulence induced by reshock. Phys. Rev. Fluids 7, 044602.CrossRefGoogle Scholar
Wong, M.L. & Lele, S.K. 2017 High-order localized dissipation weighted compact nonlinear scheme for shock-and interface-capturing in compressible flows. J. Comput. Phys. 339, 179209.CrossRefGoogle Scholar
Wong, M.L., Livescu, D. & Lele, S.K. 2019 High-resolution Navier–Stokes simulations of Richtmyer–Meshkov instability with reshock. Phys. Rev. Fluids 4, 104609.CrossRefGoogle Scholar
Yan, Z., Fu, Y., Wang, L., Yu, C. & Li, X. 2022 Effect of chemical reaction on mixing transition and turbulent statistics of cylindrical Richtmyer–Meshkov instability. J. Fluid Mech. 941, A55.CrossRefGoogle Scholar
Yeung, P.K. & Pope, S.B. 1989 Lagrangian statistics from direct numerical simulations of isotropic turbulence. J. Fluid Mech. 207, 531586.CrossRefGoogle Scholar
Youngs, D.L. 2004 Effect of initial conditions on self-similar turbulent mixing. In Proceedings of the International Workshop on the Physics of Compressible Turbulent Mixing (ed. S.B. Dalziel), vol. 9, 122.Google Scholar
Zhao, Z., Liu, N.-S. & Lu, X.-Y. 2020 Kinetic energy and enstrophy transfer in compressible Rayleigh–Taylor turbulence. J. Fluid Mech. 904, A37.CrossRefGoogle Scholar
Zhou, Y. 2001 A scaling analysis of turbulent flows driven by Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Fluids 13 (2), 538543.CrossRefGoogle Scholar
Zhou, Y. 2017 Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep. 723–725, 1160.Google Scholar
Zhou, Y., Williams, R.J.R., Ramaprabhu, P., Groom, M., Thornber, B., Hillier, A., Mostert, W., Rollin, B., Balachandar, S., Powell, P.D., et al. 2021 Rayleigh–Taylor and Richtmyer–Meshkov instabilities: a journey through scales. Physica D 423, 132838.CrossRefGoogle Scholar
Zhou, Z., Ding, J., Huang, S. & Luo, X. 2023 A new type of weighted compact nonlinear scheme with minimum dispersion and adaptive dissipation for compressible flows. Comput. Fluids 262, 105934.CrossRefGoogle Scholar