Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-02T17:54:34.241Z Has data issue: false hasContentIssue false

Mass and momentum balance during particle migration in the pressure-driven flow of frictional non-Brownian suspensions

Published online by Cambridge University Press:  25 October 2024

Michel Orsi
Affiliation:
Université Côte d'Azur, InPhyNi, 06200, France
Laurent Lobry
Affiliation:
Université Côte d'Azur, InPhyNi, 06200, France
Elisabeth Lemaire
Affiliation:
Université Côte d'Azur, InPhyNi, 06200, France
François Peters*
Affiliation:
Université Côte d'Azur, InPhyNi, 06200, France
*
Email address for correspondence: [email protected]

Abstract

The transient shear-induced particle migration of frictional non-Brownian suspensions is studied using particle-resolved simulations. The numerical method – the fictitious domain method – is well suited to heterogeneous flows thanks to a frame-invariant formulation of the subgrid (lubrication) corrections that does not involve the ambient flow (Orsi et al., J. Comput. Phys., vol. 474, 2023, 111823). The paper aims to give an accurate quantitative picture of the mass and momentum balance during the flow. The various assumptions and local constitutive laws that together form the suspension balance model (SBM) are thoroughly examined. To this purpose, the various quantities of interest are locally averaged in space and time, and their profile across the channel is extensively studied, with specific attention to the time evolution of the different contributions, either hydrodynamic in nature or from contact interactions, to the shear and normal stresses. The latter, together with the velocity gradient in the wall-normal direction and the volume fraction profile, yield the local constitutive laws, which are compared with their counterpart obtained in homogeneous shear flow. A fair agreement is observed except in a layering area at the boundaries and at the very centre of the channel. In addition, the main assumption of the SBM, i.e. the local relation between the hydrodynamic force on the particles and the particle flux, is meticulously investigated. The hydrodynamic force is found to be mainly a drag, except in the lower range of the probed volume fractions, where a non-drag contribution is observed.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, J., Tetlow, N., Graham, A., Altobelli, S., Fukushima, E., Mondy, L. & Stephens, T. 1991 Experimental observations of particle migration in concentrated suspensions: Couette flow. J. Rheol. 35 (5), 773795.CrossRefGoogle Scholar
Allen, M.P. & Tildesley, D.J. 2017 Computer Simulation of Liquids. Oxford University Press.CrossRefGoogle Scholar
Arshad, M., Maali, A., Claudet, C., Lobry, L., Peters, F. & Lemaire, E. 2021 An experimental study on the role of inter-particle friction in the shear-thinning behavior of non-Brownian suspensions. Soft Matt. 17 (25), 60886097.CrossRefGoogle Scholar
Athani, S., Metzger, B., Forterre, Y. & Mari, R. 2022 Transient flows and migration in granular suspensions: key role of Reynolds-like dilatancy. J. Fluid Mech. 949, A9.CrossRefGoogle Scholar
Badia, A., D'Angelo, Y., Peters, F. & Lobry, L. 2022 Frame-invariant modeling for non-Brownian suspension flows. J. Non-Newtonian Fluid Mech. 309, 104904.CrossRefGoogle Scholar
Batchelor, G. 1970 The stress system in a suspension of force-free particles. J. Fluid Mech. 41 (3), 545570.CrossRefGoogle Scholar
Bhowmik, B.P. & Ness, C. 2024 Scaling description of frictionless dense suspensions under inhomogeneous flow. Phys. Rev. Lett. 132 (11), 118203.CrossRefGoogle ScholarPubMed
Blanc, F., Lemaire, E., Meunier, A. & Peters, F. 2013 Microstructure in sheared non-Brownian concentrated suspensions. J. Rheol. 57 (1), 273292.CrossRefGoogle Scholar
Blanc, F., Peters, F., Gillissen, J.J., Cates, M.E., Bosio, S., Benarroche, C. & Mari, R. 2023 Rheology of dense suspensions under shear rotation. Phys. Rev. Lett. 130 (11), 118202.CrossRefGoogle ScholarPubMed
Blanc, F., Peters, F. & Lemaire, E. 2011 Experimental signature of the pair trajectories of rough spheres in the shear-induced microstructure in noncolloidal suspensions. Phys. Rev. Lett. 107 (20), 208302.CrossRefGoogle ScholarPubMed
Boyer, F., Guazzelli, É. & Pouliquen, O. 2011 Unifying suspension and granular rheology. Phys. Rev. Lett. 107 (18), 188301.CrossRefGoogle ScholarPubMed
Chang, C. & Powell, R.L. 1994 Effect of particle size distributions on the rheology of concentrated bimodal suspensions. J. Rheol. 38 (1), 8598.CrossRefGoogle Scholar
Chatté, G., Comtet, J., Nigues, A., Bocquet, L., Siria, A., Ducouret, G., Lequeux, F., Lenoir, N., Ovarlez, G. & Colin, A. 2018 Shear thinning in non-Brownian suspensions. Soft Matt. 14 (6), 879893.CrossRefGoogle ScholarPubMed
Cheal, O. & Ness, C. 2018 Rheology of dense granular suspensions under extensional flow. J. Rheol. 62 (2), 501512.CrossRefGoogle Scholar
Chèvremont, W., Chareyre, B. & Bodiguel, H. 2019 Quantitative study of the rheology of frictional suspensions: influence of friction coefficient in a large range of viscous numbers. Phys. Rev. Fluids 4 (6), 064302.CrossRefGoogle Scholar
Chun, B., Kwon, I., Jung, H.W. & Hyun, J.C. 2017 Lattice Boltzmann simulation of shear-induced particle migration in plane Couette-Poiseuille flow: local ordering of suspension. Phys. Fluids 29 (12), 121605.CrossRefGoogle Scholar
Chun, B., Park, J.S., Jung, H.W. & Won, Y.-Y. 2019 Shear-induced particle migration and segregation in non-Brownian bidisperse suspensions under planar poiseuille flow. J. Rheol. 63 (3), 437453.CrossRefGoogle Scholar
Clavaud, C., Metzger, B. & Forterre, Y. 2020 The Darcytron: a pressure-imposed device to probe the frictional transition in shear-thickening suspensions. J. Rheol. 64 (2), 395403.CrossRefGoogle Scholar
Dai, S. & Tanner, R.I. 2017 Elongational flows of some non-colloidal suspensions. Rheol. Acta 56, 6371.CrossRefGoogle Scholar
d'Ambrosio, E., Blanc, F. & Lemaire, E. 2023 The characterization of the particle normal stresses of concentrated granular suspensions by local rheometry. J. Fluid Mech. 967, A34.CrossRefGoogle Scholar
Dbouk, T., Lobry, L. & Lemaire, E. 2013 Normal stresses in concentrated non-Brownian suspensions. J. Fluid Mech. 715, 239272.CrossRefGoogle Scholar
Deboeuf, A., Gauthier, G., Martin, J., Yurkovetsky, Y. & Morris, J.F. 2009 Particle pressure in a sheared suspension: a bridge from osmosis to granular dilatancy. Phys. Rev. Lett. 102 (10), 108301.CrossRefGoogle Scholar
Denn, M.M. & Morris, J.F. 2014 Rheology of non-Brownian suspensions. Annu. Rev. Chem. Biomol. Engng 5, 203228.CrossRefGoogle ScholarPubMed
Desmond, K.W. & Weeks, E.R. 2014 Influence of particle size distribution on random close packing of spheres. Phys. Rev. E 90 (2), 022204.CrossRefGoogle ScholarPubMed
Di Vaira, N.J., Łaniewski-Wołłk, Ł., Johnson, R.L., Aminossadati, S.M. & Leonardi, C.R. 2022 Influence of particle polydispersity on bulk migration and size segregation in channel flows. J. Fluid Mech. 939, A30.CrossRefGoogle Scholar
Etcheverry, B., Forterre, Y. & Metzger, B. 2023 Capillary-stress controlled rheometer reveals the dual rheology of shear-thickening suspensions. Phys. Rev. X 13 (1), 011024.Google Scholar
Gadala-Maria, F. & Acrivos, A. 1980 Shear-induced structure in a concentrated suspension of solid spheres. J. Rheol. 24 (6), 799814.CrossRefGoogle Scholar
Gallier, S., Lemaire, E., Lobry, L. & Peters, F. 2014 a A fictitious domain approach for the simulation of dense suspensions. J. Comput. Phys. 256, 367387.CrossRefGoogle Scholar
Gallier, S., Lemaire, E., Lobry, L. & Peters, F. 2016 Effect of confinement in wall-bounded non-colloidal suspensions. J. Fluid Mech. 799, 100127.CrossRefGoogle Scholar
Gallier, S., Lemaire, E., Peters, F. & Lobry, L. 2014 b Rheology of sheared suspensions of rough frictional particles. J. Fluid Mech. 757, 514549.CrossRefGoogle Scholar
Gallier, S., Peters, F. & Lobry, L. 2018 Simulations of sheared dense noncolloidal suspensions: evaluation of the role of long-range hydrodynamics. Phys. Rev. Fluids 3 (4), 042301.CrossRefGoogle Scholar
Garland, S., Gauthier, G., Martin, J. & Morris, J. 2013 Normal stress measurements in sheared non-Brownian suspensions. J. Rheol. 57 (1), 7188.CrossRefGoogle Scholar
Gillissen, J.J. & Ness, C. 2020 Modeling the microstructure and stress in dense suspensions under inhomogeneous flow. Phys. Rev. Lett. 125 (18), 184503.CrossRefGoogle ScholarPubMed
Gillissen, J.J., Ness, C., Peterson, J.D., Wilson, H.J. & Cates, M.E. 2019 Constitutive model for time-dependent flows of shear-thickening suspensions. Phys. Rev. Lett. 123 (21), 214504.CrossRefGoogle ScholarPubMed
Guasto, J.S., Ross, A.S. & Gollub, J.P. 2010 Hydrodynamic irreversibility in particle suspensions with nonuniform strain. Phys. Rev. E 81 (6), 061401.CrossRefGoogle ScholarPubMed
Guazzelli, É. & Pouliquen, O. 2018 Rheology of dense granular suspensions. J. Fluid Mech. 852, P1.CrossRefGoogle Scholar
Hampton, R., Mammoli, A., Graham, A., Tetlow, N. & Altobelli, S. 1997 Migration of particles undergoing pressure-driven flow in a circular conduit. J. Rheol. 41 (3), 621640.CrossRefGoogle Scholar
Hogendoorn, W., Breugem, W.-P., Frank, D., Bruschewski, M., Grundmann, S. & Poelma, C. 2023 From nearly homogeneous to core-peaking suspensions: insight in suspension pipe flows using MRI and DNS. Phys. Rev. Fluids 8 (12), 124302.CrossRefGoogle Scholar
Howard, A.A. 2018 Numerical simulations to investigate particle dispersion in non-homogeneous suspension flows. PhD thesis, Brown University.Google Scholar
Howard, A.A., Dong, J., Patel, R., D'Elia, M., Maxey, M.R. & Stinis, P. 2023 Machine learning methods for particle stress development in suspension poiseuille flows. Rheol. Acta 62 (10), 507534.CrossRefGoogle Scholar
Howard, A.A., Maxey, M.R. & Gallier, S. 2022 Bidisperse supension balance model. Phys. Rev. Fluids 7 (12), 124301.CrossRefGoogle Scholar
Irving, J. & Kirkwood, J.G. 1950 The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18 (6), 817829.CrossRefGoogle Scholar
Jackson, R. 1997 Locally averaged equations of motion for a mixture of identical spherical particles and a Newtonian fluid. Chem. Engng Sci. 52 (15), 24572469.CrossRefGoogle Scholar
Jana, S., Kapoor, B. & Acrivos, A. 1995 Apparent wall slip velocity coefficients in concentrated suspensions of noncolloidal particles. J. Rheol. 39 (6), 11231132.CrossRefGoogle Scholar
Jenkins, J.T., Seto, R. & La Ragione, L. 2021 Predictions of microstructure and stress in planar extensional flows of a dense viscous suspension. J. Fluid Mech. 912, A27.CrossRefGoogle Scholar
Koh, C.J., Hookham, P. & Leal, L.G. 1994 An experimental investigation of concentrated suspension flows in a rectangular channel. J. Fluid Mech. 266, 132.CrossRefGoogle Scholar
Krishnan, G.P., Beimfohr, S. & Leighton, D.T. 1996 Shear-induced radial segregation in bidisperse suspensions. J. Fluid Mech. 321, 371393.CrossRefGoogle Scholar
Le, A.V.N., Izzet, A., Ovarlez, G. & Colin, A. 2023 Solvents govern rheology and jamming of polymeric bead suspensions. J. Colloid Interface Sci. 629, 438450.Google Scholar
Leighton, D. & Acrivos, A. 1986 Viscous resuspension. Chem. Engng Sci. 41 (6), 13771384.CrossRefGoogle Scholar
Leighton, D. & Acrivos, A. 1987 The shear-induced migration of particles in concentrated suspensions. J. Fluid Mech. 181, 415439.CrossRefGoogle Scholar
Lemaire, E., Blanc, F., Claudet, C., Gallier, S., Lobry, L. & Peters, F. 2023 Rheology of non-Brownian suspensions: a rough contact story. Rheol. Acta 62 (5-6), 253268.CrossRefGoogle Scholar
Lhuillier, D. 2009 Migration of rigid particles in non-Brownian viscous suspensions. Phys. Fluids 21 (2), 023302.CrossRefGoogle Scholar
Lin, N.Y., Guy, B.M., Hermes, M., Ness, C., Sun, J., Poon, W.C. & Cohen, I. 2015 Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions. Phys. Rev. Lett. 115 (22), 228304.CrossRefGoogle ScholarPubMed
Lobry, L., Lemaire, E., Blanc, F., Gallier, S. & Peters, F. 2019 Shear thinning in non-Brownian suspensions explained by variable friction between particles. J. Fluid Mech. 860, 682710.CrossRefGoogle Scholar
Lyon, M. & Leal, L. 1998 An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. Part 1. Monodisperse systems. J. Fluid Mech. 363, 2556.CrossRefGoogle Scholar
Mari, R., Seto, R., Morris, J.F. & Denn, M.M. 2014 Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions. J. Rheol. 58 (6), 16931724.CrossRefGoogle Scholar
Marzougui, D., Chareyre, B. & Chauchat, J. 2015 Microscopic origins of shear stress in dense fluid–grain mixtures. Granul. Matt. 17, 297309.CrossRefGoogle Scholar
Miller, R.M. & Morris, J.F. 2006 Normal stress-driven migration and axial development in pressure-driven flow of concentrated suspensions. J. Non-Newtonian Fluid Mech. 135 (2-3), 149165.CrossRefGoogle Scholar
Miller, R.M., Singh, J.P. & Morris, J.F. 2009 Suspension flow modeling for general geometries. Chem. Engng Sci. 64 (22), 45974610.CrossRefGoogle Scholar
Mills, P. & Snabre, P. 1995 Rheology and structure of concentrated suspensions of hard spheres. Shear induced particle migration. J. Phys. II 5 (10), 15971608.Google Scholar
Morris, J. & Brady, J. 1998 Pressure-driven flow of a suspension: buoyancy effects. Intl J. Multiphase flow 24 (1), 105130.CrossRefGoogle Scholar
Morris, J.F. 2020 a Shear thickening of concentrated suspensions: recent developments and relation to other phenomena. Annu. Rev. Fluid Mech. 52, 121144.CrossRefGoogle Scholar
Morris, J.F. 2020 b Toward a fluid mechanics of suspensions. Phys. Rev. Fluids 5 (11), 110519.CrossRefGoogle Scholar
Morris, J.F. 2023 Progress and challenges in suspension rheology. Rheol. Acta 62 (11), 617629.CrossRefGoogle Scholar
Morris, J.F. & Boulay, F. 1999 Curvilinear flows of noncolloidal suspensions: the role of normal stresses. J. Rheol. 43 (5), 12131237.CrossRefGoogle Scholar
Nott, P.R. & Brady, J.F. 1994 Pressure-driven flow of suspensions: simulation and theory. J. Fluid Mech. 275, 157199.CrossRefGoogle Scholar
Nott, P.R., Guazzelli, E. & Pouliquen, O. 2011 The suspension balance model revisited. Phys. Fluids 23 (4), 043304.CrossRefGoogle Scholar
Oh, S., Song, Y.-Q., Garagash, D.I., Lecampion, B. & Desroches, J. 2015 Pressure-driven suspension flow near jamming. Phys. Rev. Lett. 114 (8), 088301.CrossRefGoogle ScholarPubMed
Orsi, M., Lobry, L. & Peters, F. 2023 Frame-invariant sub-grid corrections to the fictitious domain method for the simulation of particulate suspensions in nonlinear flows using openfoam. J. Comput. Phys. 474, 111823.CrossRefGoogle Scholar
Ozenda, O. 2019 Modélisation continue de la rhéologie des suspensions et de la migration. PhD thesis, Université Grenoble Alpes (ComUE).Google Scholar
Pednekar, S., Chun, J. & Morris, J.F. 2018 Bidisperse and polydisperse suspension rheology at large solid fraction. J. Rheol. 62 (2), 513526.CrossRefGoogle Scholar
Peerbooms, W., Nadorp, T., van der Heijden, A. & Breugem, W.-P. 2024 Interparticle friction in sheared dense suspensions: comparison of the viscous and frictional rheology descriptions. J. Rheol. 68 (2), 263283.CrossRefGoogle Scholar
Peters, F., Ghigliotti, G., Gallier, S., Blanc, F., Lemaire, E. & Lobry, L. 2016 Rheology of non-Brownian suspensions of rough frictional particles under shear reversal: a numerical study. J. Rheol. 60 (4), 715732.CrossRefGoogle Scholar
Phillips, R.J., Armstrong, R.C., Brown, R.A., Graham, A.L. & Abbott, J.R. 1992 A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Phys. Fluids A: Fluid Dyn. 4 (1), 3040.CrossRefGoogle Scholar
Rashedi, A., Sarabian, M., Firouznia, M., Roberts, D., Ovarlez, G. & Hormozi, S. 2020 Shear-induced migration and axial development of particles in channel flows of non-Brownian suspensions. AIChE J. 66 (12), e17100.CrossRefGoogle Scholar
Richardson, J. & Zaki, W. 1954 The sedimentation of a suspension of uniform spheres under conditions of viscous flow. Chem. Engng Sci. 3 (2), 6573.CrossRefGoogle Scholar
Rondon, L., Pouliquen, O. & Aussillous, P. 2011 Granular collapse in a fluid: role of the initial volume fraction. Phys. Fluids 23 (7), 073301.CrossRefGoogle Scholar
Sarabian, M., Firouznia, M., Metzger, B. & Hormozi, S. 2019 Fully developed and transient concentration profiles of particulate suspensions sheared in a cylindrical Couette cell. J. Fluid Mech. 862, 659671.CrossRefGoogle Scholar
Seto, R., Giusteri, G.G. & Martiniello, A. 2017 Microstructure and thickening of dense suspensions under extensional and shear flows. J. Fluid Mech. 825, R3.CrossRefGoogle Scholar
Seto, R., Mari, R., Morris, J.F. & Denn, M.M. 2013 Discontinuous shear thickening of frictional hard-sphere suspensions. Phys. Rev. Lett. 111 (21), 218301.CrossRefGoogle ScholarPubMed
Shajahan, T., Schouten, T., Raaghav, S.K., van Rhee, C., Keetels, G. & Breugem, W.-P. 2024 Characteristics of slurry transport regimes: insights from experiments and interface-resolved direct numerical simulations. Intl J. Multiphase Flow 176, 104831.CrossRefGoogle Scholar
Shauly, A., Wachs, A. & Nir, A. 1998 Shear-induced particle migration in a polydisperse concentrated suspension. J. Rheol. 42 (6), 13291348.CrossRefGoogle Scholar
Singh, A., Mari, R., Denn, M.M. & Morris, J.F. 2018 A constitutive model for simple shear of dense frictional suspensions. J. Rheol. 62 (2), 457468.CrossRefGoogle Scholar
Snook, B., Butler, J.E. & Guazzelli, É. 2016 Dynamics of shear-induced migration of spherical particles in oscillatory pipe flow. J. Fluid Mech. 786, 128153.CrossRefGoogle Scholar
Tanner, R.I. & Dai, S. 2016 Particle roughness and rheology in noncolloidal suspensions. J. Rheol. 60 (4), 809818.CrossRefGoogle Scholar
Vowinckel, B., Biegert, E., Meiburg, E., Aussillous, P. & Guazzelli, É. 2021 Rheology of mobile sediment beds sheared by viscous, pressure-driven flows. J. Fluid Mech. 921, A20.CrossRefGoogle Scholar
Yeo, K. & Maxey, M.R. 2010 Ordering transition of non-Brownian suspensions in confined steady shear flow. Phys. Rev. E 81 (5), 051502.CrossRefGoogle ScholarPubMed
Yeo, K. & Maxey, M.R. 2011 Numerical simulations of concentrated suspensions of monodisperse particles in a Poiseuille flow. J. Fluid Mech. 682, 491518.CrossRefGoogle Scholar
Zarraga, I.E., Hill, D.A. & Leighton, D.T. Jr. 2000 The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids. J. Rheol. 44 (2), 185220.CrossRefGoogle Scholar
Zhang, D. & Prosperetti, A. 1994 Averaged equations for inviscid disperse two-phase flow. J. Fluid Mech. 267, 185219.CrossRefGoogle Scholar