Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-12-01T03:59:00.288Z Has data issue: false hasContentIssue false

Evolutionary significance of the blastozoan Eumorphocystis and its pseudo-arms

Published online by Cambridge University Press:  03 November 2020

Thomas E. Guensburg
Affiliation:
IRC, The Field Museum, 1400 South Lake Shore Drive, Chicago, Illinois60605
James Sprinkle
Affiliation:
Department of Geological Sciences, Jackson School of Geosciences, University of Texas, 1 University Station C1100, Austin, Texas78712-0254
Rich Mooi
Affiliation:
Department of Invertebrate Zoology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, California94118
Bertrand Lefebvre
Affiliation:
Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, F-69622, Villeurbanne, France

Abstract

Twelve specimens of Eumorphocystis Branson and Peck, 1940 provide the basis for new findings and a more informed assessment of whether this blastozoan (a group including eocrinoids, blastoids, diploporites, rhombiferans) constitutes the sister taxon to crinoids, as has been recently proposed. Both Eumorphocystis and earliest-known crinoid feeding appendages express longitudinal canals, a demonstrable trait exclusive to these taxa. However, the specimen series studied here shows that Eumorphocystis canals constrict proximally and travel within ambulacrals above the thecal cavity. This relationship is congruent with a documented blastozoan pattern but very unlike earliest crinoid topology. Earliest crinoid arm cavities lie fully beneath floor plates; these expand and merge directly with the main thecal coelomic cavity at thecal shoulders. Other associated anatomical features echo this contrasting comparison. Feeding appendages of Eumorphocystis lack two-tiered cover plates, podial basins/pores, and lateral arm plating, all features of earliest crinoid ‘true arms.’ Eumorphocystis feeding appendages are buttressed by solid block-like plates added during ontogeny at a generative zone below floor plates, a pattern with no known parallel among crinoids. Eumorphocystis feeding appendages express brachioles, erect extensions of floor plates, also unknown among crinoids. These several distinctions point to nonhomology of most feeding appendage anatomy, including longitudinal canals, removing Eumorphocystis and other blastozoans from exclusive relationship with crinoids. Eumorphocystis further differs from crinoids in that thecal plates express diplopores, respiratory structures not present among crinoids, but ubiquitous among certain groups of blastozoans. Phylogenetic analysis places Eumorphocystis as a crownward blastozoan, far removed from crinoids.

Type
Articles
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ausich, W.I., 1988, Evolutionary convergence and parallelism in crinoid calyx design: Journal of Paleontology, v. 62, p. 906916.CrossRefGoogle Scholar
Ausich, W.I., Kammer, T.W., Rhenberg, E.C., and Wright, D.F., 2015a, Early phylogeny of crinoids within the pelmatozoan clade: Palaeontology, v. 58, p. 937952, doi:10.1111/pala.12204.CrossRefGoogle Scholar
Ausich, W.I., Kammer, T.W., Wright, D., Cole, S., Peters, M., and Rhenberg, E., 2015b, Toward a phylogenetic classification of the Crinoidea (Echinodermata), in Zamora, S., and Romano, I., eds., Progress in Echinoderm Paleobiology: Instituto Geológico y Minero de España Cuaderno del Museo Geominero, v. 19, p. 2932.Google Scholar
Ausich, W.I., Wright, D.F., Cole, S.R., and Sevastopulo, G.D., 2020, Homology of posterior interrays in crinoids: A review and new perspectives from phylogenetics, the fossil record, and development: Palaeontology, v. 63, p. 525545, doi:10.1111/pala.12475.CrossRefGoogle Scholar
Billings, E., 1857, New species of fossils from Silurian rocks of Canada: Geological Survey of Canada, Report for the Years 1853–1856, p. 245345.Google Scholar
Billings, E., 1859, On the Crinoideae of the lower Silurian rocks of Canada: Geological Survey of Canada, Canadian Organic Remains, dec. 4, p. 172.CrossRefGoogle Scholar
Branson, E.B. and Peck, R.E., 1940, A new cystoid from the Ordovician of Oklahoma: Journal of Paleontology, v. 14, p. 8992.Google Scholar
Callaway, C., 1877, On a new area of upper Cambrian rocks in South Shropshire, with a description of new fauna: Quarterly Journal of the Geological Society of London, v. 33, p. 652672.CrossRefGoogle Scholar
Clausen, S., Jell, P.A., Legrain, X., and Smith, A.B., 2009, Pelmatozoan arms from the middle Cambrian of Australia: Bridging the gaps between brachioles and brachials: Lethaia, v. 43, p. 432440, doi:10.1111/j.1502-3931.2010.00220.x.Google Scholar
Conrad, T.A., 1842, Descriptions of new species of organic remains belonging to the Silurian Devonian, and Carboniferous Systems of the U.S.: Journal of the Philadelphia Academy of Natural Sciences, old series, v. 8, p. 235280.Google Scholar
David, B., and Mooi, R., 1999, Comprendre les échinodermes: La contribution du modèle extraxial-axial: Bulletin de la Société Géologique de France, v. 170, p. 91101.Google Scholar
David, B., Lefebvre, B., Mooi, R., and Parsley, R., 2000, Are homalozoans echinoderms? An answer from the extraxial-axial theory: Paleobiology, v. 26, p. 529555, doi:10.1666/0094-8373(2000)026<0529:AHEAAF>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Deline, B., Thompson, J.R., Smith, N.S., Zamora, S., Rahman, I.A., Sheffield, S., Ausich, W.I., Kammer, T.W., and Sumrall, C.D., 2020, Evolution and development at the origin of a phylum: Current Biology, v. 30, no. 9, p. 16721679, doi:10.1016/j.cub.2020.02.054.CrossRefGoogle ScholarPubMed
Fay, R.O., 1960, The type species of Globoblastus Hambach: Oklahoma Geology Notes, v. 21, p. 247248.Google Scholar
Foerste, A.F., 1938, Echinodermata, in Resser, C.E., and Howell, B.F., eds., Lower Cambrian Olenellus Zone of the Appalachians: Geological Society of America Bulletin, v. 49, p. 212213.Google Scholar
Freudenstein, J.V., 2005, Characters, states, and homology: Systematic Biology, v. 54, p. 965973, doi:10.1080/10635150500354654.CrossRefGoogle ScholarPubMed
Gahn, F.J., 2015, Homological and phylogenetic implications of a disparid-like interray of among lower Ordovician camerate crinoids, in Zamora, S., and Rabano, I. (eds.), Progress in Echinoderm Palaeobiology: Instituto Geológico Minero de España, Cuadernos del Museo Geominero, v. 19, p. 5965.Google Scholar
Guensburg, T.E., 2012, Phylogenetic implications of the oldest crinoids: Journal of Paleontology, v. 86, p. 455461, doi:10.2307/41480208.CrossRefGoogle Scholar
Guensburg, T.E., and Sprinkle, J., 2001, Earliest crinoids: New evidence for the origin of the dominant Paleozoic echinoderms: Geology, v. 29, p. 131134, doi:10.1130/0091-7613(2001)029<0131:ECNEFT>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Guensburg, T.E., and Sprinkle, J., 2003, The oldest known crinoids (Early Ordovician, Utah), and a new crinoid plate homology system: Bulletins of American Paleontology, v. 364, p. 143.Google Scholar
Guensburg, T.E., and Sprinkle, J., 2007, Phylogenetic implications of the Protocrinoidea: Blastozoans are not ancestral to crinoids: Annales de Paléontologie, v. 93, p. 277290, doi:10.1016/j.annpal.2007.09.005.CrossRefGoogle Scholar
Guensburg, T.E., and Sprinkle, J., 2009, Solving the mystery of crinoid ancestry: New fossil evidence of arm origin and development: Journal of Paleontology, v. 83, p. 350364, doi:10.1666/08-090.1.CrossRefGoogle Scholar
Guensburg, T.E., and Sprinkle, J., 2017, New evidence of early hybocrinid tegmens: Phylogenetic implications: Geological Society of America Abstracts with Programs, Joint 52nd Northeastern Annual Section/51st North-Central Annual Section Meeting, paper 49-2, doi:10.1130/abs/2017NE-291462.CrossRefGoogle Scholar
Guensburg, T.E., Mooi, R., Sprinkle, J., David, B., and Lefebvre, B., 2010, Pelmatozoan arms from the mid-Cambrian of Australia: Bridging the gap between brachioles and arms? Comment: There is no bridge: Lethaia, v. 43, p. 432440, doi:10.1111/j.1502-3931.2010.00220.x.Google Scholar
Guensburg, T.E., Blake, D.B., Sprinkle, J., and Mooi, R., 2016, Crinoid ancestry without blastozoans: Acta Palaeontologica Polonica, v. 61, p. 253266, doi:10.4202/app.00211.2015.Google Scholar
Guensburg, T.E., Sprinkle, J., Mooi, R., Lefebvre, B., David, B., Roux, M., and Derstler, K., 2020, Athenacrinus n. gen. and other early echinoderm taxa inform crinoid origin and arm evolution: Journal of Paleontology, v. 94, p. 311333, doi:10.1017/jpa.2019.87.CrossRefGoogle Scholar
Hall, J., 1866, Descriptions of new species of Crinoidea and other fossils from the lower Silurian strata principally of the Hudson-River Group (a note on it only): New York State Cabinet, Natural History, 20th Annual Report, p. 304.Google Scholar
Heinzeller, T. and Welsch, U., 1994, Crinoidea, in Harrison, F.W., and Chia, F.-S., eds., Microscopic Anatomy of the Invertebrates, Volume 14, Echinodermata: New York, Wiley-Liss, p. 9148.Google Scholar
Jaekel, O., 1899, Stemmesgeschichte der Pelmatozoen, 1, Thecoidea und Cystoidea: Berlin, Julius Springer, 442 p.Google Scholar
Jaekel, O., 1901, Über Carpoideen, eine neue Klasse von Pelmatozoen: Zeitschrift der Deutschen Geologischen Gesellschaft, v. 52, p. 661677.Google Scholar
Kammer, T.W., Sumrall, C.D., Zamora, S., Ausich, W.I., and Deline, B., 2013, Oral region homologies in Paleozoic crinoids and other plesiomorphic pentaradial echinoderms: PLoS ONE, v. 8, e77989, doi:10.1371/journal.pone.0077989.CrossRefGoogle ScholarPubMed
Lefebvre, B., Guensburg, T.E., Martin, E.L.O., Mooi, R., Nardin, E., Nohejlová, M., Saleh, F., Kouraïss, K., El Hariri, K., and David, B., 2019, Exceptionally preserved soft parts in fossils from the Lower Ordovician of Morocco clarify stylophoran affinities within basal deuterostomes: Geobios, v. 52, p. 2736, doi:10.1016/j.geobios.2018.11.001.CrossRefGoogle Scholar
Leukart, C.G.F.R., 1848, Über die Morphologie und die Verwandtschshaftverhältnisse der wirbellosen Thiere: Braunschweig, Germany, Friedrich Wieweg und Sohn, 180 p.Google Scholar
Maddison, D.R., and Maddison, W.P., 2018. Mesquite: A Modular System for Evolutionary Analysis, https://www.mesquiteproject.org/.Google Scholar
Mooi, R., and David, B., 1997, Skeletal homologies of echinoderms: The Paleontological Society Papers, v. 3, p. 305335.Google Scholar
Mooi, R., and David, B., 1998, Evolution within a bizarre phylum: Homologies of the first echinoderms: American Zoologist, v. 38, p. 965974.Google Scholar
Mooi, R., and David, B., 2000, What a new model of skeletal homologies tells us about asteroid evolution: Integrative and Comparative Biology, v. 40, p. 326339, doi:10.1093/icb/40.3.326.Google Scholar
Mooi, R., David, B., and Wray, G., 2005, Arrays in rays: Terminal addition in echinoderms and its correlation with gene expression: Evolution and Development, v. 7, p. 542555, doi:10.1111/j.1525-142X.2005.05058.x.CrossRefGoogle ScholarPubMed
Parsley, R.D., 1982, Eumorphocystis, in Sprinkle, J., ed., Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma: University of Kansas Paleontological Contributions, Monograph 1, p. 180188.Google Scholar
Parsley, R.L., and Mintz, L.W., 1975, North American Paracrinoidea: (Ordovician: Paracrinozoa, new, Echinodermata): Bulletins of American Paleontology, v. 68, p. 1115.Google Scholar
Patterson, C., 1988, Homology in classical and molecular biology: Molecular Biology and Evolution, v. 5, p. 603625.Google ScholarPubMed
Paul, C.R.C., and Smith, A.B., 1984, The early radiation and phylogeny of echinoderms: Biological Reviews, v. 59, p. 443481.CrossRefGoogle Scholar
Pompeckj, J.F., 1896, Die Fauna des Cambrium von Tejrovic und Skrej in Böhmen: Jahrbuch der Kaiserlich-königlichen Geologischen Reichsanstalt, v. 45, p. 495614.Google Scholar
Robison, R.A., 1965, Middle Cambrian eocrinoids from western North America: Journal of Paleontology, v. 39, p. 355364.Google Scholar
Ruedemann, R., 1933, Camptostroma, a lower Cambrian floating hydrozoan: Proceedings of the United States National Museum, v. 82, p. 113.CrossRefGoogle Scholar
Sheffield, S.L. and Sumrall, C.D., 2019a, The phylogeny of the Diploporita: A polyphyletic assemblage of blastozoan echinoderms: Journal of Paleontology, v. 93, no. 4, p. 740752, doi:10.1017/jpa.2019.2.CrossRefGoogle Scholar
Sheffield, S.L., and Sumrall, C.D., 2019b, A re-interpretation of the ambulacral system of Eumorphocystis (Blastozoa, Echinodermata) and its bearing on the evolution of early crinoids: Palaeontology, v. 62, no. 1, p. 163173, doi:10.1111/pala.12396.CrossRefGoogle Scholar
Sinclair, G.W., 1945, Some Ordovician echinoderms from Oklahoma: American Midland Naturalist, v. 34, p. 707716.Google Scholar
Smith, A.B., and Jell, P.A., 1990, Cambrian edrioasteroids from Australia and the origin of starfishes: Memoirs of the Queensland Museum, v. 28, p. 715778.Google Scholar
Sprinkle, J., 1973, Morphology and Evolution of Blastozoan Echinoderms: Cambridge, Massachusetts, Special Publications, Museum of Comparative Zoology, Harvard University, 283 p.CrossRefGoogle Scholar
Sprinkle, J., 1982, Hybocrinus, in Sprinkle, J., ed., Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma: University of Kansas Paleontological Contributions, Monograph 1, p. 119128.Google Scholar
Sprinkle, J., 1985, New edrioasteroid from the middle Cambrian of western Utah: University of Kansas Paleontological Contributions, Paper 116, p. 14.Google Scholar
Sprinkle, J. and Sumrall, C.D., 2015, New edrioasterine and asterocystitid (Echinodermata: Edrioasteroidea) from the Ninemile Shale, central Nevada: Journal of Paleontology, v. 89, p. 17, doi:10.1017/jpa.2014.29.CrossRefGoogle Scholar
Sprinkle, J., Parsley, R.L., Zhao, Y., and Peng, J., 2011, Revision of lyracystid eocrinoids from the middle Cambrian of South China and western Laurentia: Journal of Paleontology, v. 85, p. 250255, doi:10.1666/10-072.1.CrossRefGoogle Scholar
Strimple, H.L., and McGinnis, M.R., 1972, A new camerate crinoid from the Al Rose Formation, Lower Ordovician of California: Journal of Paleontology, v. 46, p. 7274.Google Scholar
Sumrall, C.D., 2017, New insights concerning homology of the oral region and ambulacral system plating of pentaradial echinoderms: Journal of Paleontology, v. 91, special issue 4 (Progress in Echinoderm Paleobiology), p. 604617, doi:10.1017/jpa.2017.9.CrossRefGoogle Scholar
Swofford, D.L., 2003, PAUP*, Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4: Sunderland, Massachusetts, Sinauer Associates.Google Scholar
Ubaghs, G., 1953, Notes sur Lichenoides priscus Barrande, éocrinoïde du Cambrien moyen de la Tchécoslovaquie: Bulletin de l'Institut Royal des Sciences Naturelles de Belgique, v. 29, p. 124.Google Scholar
Ubaghs, G., 1963, Rhopalocystis destombesi n. g., n. sp., éocrinoïde de l'Ordovicien inférieur (Trémadocien supérieur) du Sud marocain: Notes et Mémoires du Service Géologique du Maroc, v. 172, p. 2545.Google Scholar
Ubaghs, G., 1968, Eocrinoidea, in Moore, R.C., ed., Treatise on Invertebrate Paleontology, Part S, Echinodermata 1, Volume 2: Boulder, Colorado, and Lawrence, Kansas, Geological Society of America (and University of Kansas Press), p. S455S495.Google Scholar
Ubaghs, G., 1969, Aethocrinus moorei Ubaghs, n. gen. n. sp, le plus ancien crinoïde dicyclique connu: University of Kansas Paleontological Contributions, Paper 38, p. 125.Google Scholar
Ulrich, E.O., 1925, New classification of the ‘Heterocrinidae,’ in Foerste, A.F. (ed.), Upper Ordovician Faunas of Ontario and Quebec: Geological Survey of Canada, Memoir 138, p. 82104.Google Scholar
Wright, D.F., Ausich, W.I., Cole, S.R., Peter, M.E., and Rhenberg, E.C., 2017, Phylogenetic taxonomy and classification of the Crinoidea (Echinodermata): Journal of Paleontology, v. 91, p. 829846, doi:10.1017/jpa.2016.142.CrossRefGoogle Scholar
Zamora, S., and Smith, A.B., 2012, Cambrian stalked echinoderms show unexpected plasticity of arm construction: Royal Society Proceedings B, Proclamations in Biological Science, v. 279, p. 293298.CrossRefGoogle ScholarPubMed
Zamora, S., Lefebvre, B., Hosgör, I., Franzen, C., Nardin, E., Fatka, O., and Alvaro, J.J., 2015, The Cambrian edrioasteroid Stromatocystites: Systematics, palaeogeography, and palaeobiology: Geobios, v. 48, p. 417426, doi:10.1016/j.geobios.2015.07.004.CrossRefGoogle Scholar
Zhao, Y., Sumrall, C.D., Parsley, R.D., and Peng, J., 2010, Kailidiscus, a new plesiomorphic edrioasteroid from the Kaili biota of Guizhou Province, China: Journal of Paleontology, v. 84, p. 668680, doi:10.1666/09-159.1CrossRefGoogle Scholar