No CrossRef data available.
Published online by Cambridge University Press: 20 September 2024
Parallel manipulators with flexible morphing platform (FMP) provide potential solution in various application fields, such as shape-morphing underwater robot, deformable wings, and human–machine interfaces. However, there is still lack of effective approach for the design and analysis of such novel type of parallel manipulator. In this article, a 9-UPS redundant actuation parallel manipulator with flexible morphing moving platform is designed as a representative of this kind of manipulator. Correspondingly, a deformation estimation and shape control approach for the FMP is presented. The proposed deformation estimation approach is designed based on the bending energy, which can achieve high calculation efficiency and avoid complex mechanical definition and calculation. And the proposed shape control approach is realized by utilizing a nonrigid ICP match algorithm, which can continuously deform the morphing platform to an arbitrary target surface. A prototype of the 9-UPS parallel manipulator is fabricated and analyzed as verification. The experiment results show that the proposed approach offers a promising avenue for the deformation estimation and shape control of the morphing platform.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.