Hostname: page-component-669899f699-qzcqf Total loading time: 0 Render date: 2025-05-02T07:08:44.207Z Has data issue: false hasContentIssue false

A new species of Mesolepis (Actinopterygii) from the Late Carboniferous of Scotland, with especial reference to Mesolepis wardi Young

Published online by Cambridge University Press:  14 November 2024

Francis M. ELLIOTT*
Affiliation:
Scottish Universities Environmental Research Centre, East Kilbride, UK.
Sam GILES
Affiliation:
School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK.
*
*Corresponding author Email: [email protected]

Abstract

A new species, Mesolepis arabellae, is described from material recently recovered from the shales of the Scottish Lower Coal Measure Formation. Up until now, three British species of Mesolepis have been named: Mesolepis scalaris Young, Mesolepis wardi Young, and Mesolepis micropterus Traquair. A fourth member of the genus, Mesolepis pustulosa Pruvost from the coalfields of Northern France, was named on scale description alone, though the validity of this taxon is uncertain. The new material described here varies from other Mesolepis species in its caudal peduncle morphology and overall body shape. Micro-computed tomography of the new species reveals the presence of teeth on the premaxilla and dentary and a splint-like fused prearticular and coronoid element, with implications for a possible feeding behaviour of Mesolepis. Additional information on the homogeneous Mesolepis wardi is also presented.

Type
Spontaneous Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

16. References

Bradley Dyne, M. 1939. The skull of Amphicentrum granulosum. Proceedings of the Zoological Society of London B109, 195210.CrossRefGoogle Scholar
Coates, M. I. 1998. Actinopterygians from the Namurian of Bearsden, Glasgow, with comments on the early evolution of actinopterygian neurocrania. Zoological Journal of the Linnean Society 122, 2759. https://doi.org/10.1111/j.1096-3642.1998.tb02524.xCrossRefGoogle Scholar
Dean, M. N., Bizzarro, J. J., Clark, B., Underwood, C. J. & Johanson, Z. 2017. Large batoid fishes frequently consume stingrays despite skeletal damage. Royal Society Open Science 4, 170674. http://doi.org/10.1098/rsos.170674CrossRefGoogle ScholarPubMed
Elliott, F. M. 2014. A new haplolepid fauna (Osteichthyes: Actinopterygii) from the Lower Coal Measures of Scotland: Westphalian A Langsettian, Carbonicola communis chronozone (Bashkirian). Earth and Environmental Science Transactions of the Royal Society of Edinburgh 105, 207–25. https://doi.org/10.1017/S1755691015000067CrossRefGoogle Scholar
Elliott, F. M. 2018. An early actinopterygian ichthyofauna from the Scottish Lower Coal Measures Formation: Westphalian A (Bashkirian). Earth and Environmental Science Transactions of the Royal Society of Edinburgh 107, 351–94. https://doi.org/10.1017/S1755691018000051CrossRefGoogle Scholar
Elliott, F. M. 2023. On a new species of Rhizodopsis from the Carboniferous of Scotland. Scottish Journal of Geology 59. https://doi.org/10.1144/sjg2023-008CrossRefGoogle Scholar
Elliott, F. M. & Challands, T. J. 2021. A review of the megalichthyid Megalichthys pygmaeus Traquair, from the Scottish lower coal measures. Unpublished report.Google Scholar
Elliott, F. M., Challands, T. J. & Smithson, T. R. 2023. Dipnoan diversity in the early Pennsylvanian of Scotland: new lungfish from the Lower Coal Measures of North Lanarkshire. Scottish Journal of Geology 59. https://doi.org/10.1144/sjg2023-006CrossRefGoogle Scholar
Fletcher, T., Altringham, J., Peakall, J., Wignall, P. & Dorrell, R. 2014. Hydrodynamics of fossil fishes. Proceedings of the Royal Society B: Biological Sciences 281, 20140703. http://dx.doi.org/10.1098/rspb.2014.0703CrossRefGoogle ScholarPubMed
Friedman, M., Pierce, S. E., Coates, M. & Giles, S. 2018. Feeding structures in the ray-finned fish Eurynotus crenatus (Actinopterygii: Eurynotiformes): implications for trophic diversification among Carboniferous actinopterygians. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 109, 3347.CrossRefGoogle Scholar
Friedman, S. T., Price, S. A., Corn, K. A., Larouche, O., Martinez, C. M. & Wainwright, P. C. 2020. Body shape diversification along the benthic-pelagic axis in marine fishes. Proceedings of the Royal Society B: Biological Sciences 287, 20201053. http://dx.doi.org/10.1098/rspb.2020.1053CrossRefGoogle ScholarPubMed
Hancock, A. & Atthey, T. 1872. XXVI – Descriptive notes on a nearly entire specimen of Pleurodus rankinii, on two new species of Platysomus and a new Amphicentrum, with remarks on a few other fish remains found in the coal measures at Newsham. Annals and Magazine of Natural History 9, 411–15.CrossRefGoogle Scholar
Huxley, T. H. 1880. On the applications of the laws of evolution to the arrangement of the Vertebrata and more particularly of the Mammalia. Proceedings of the Zoological Society of London 43, 649–62.Google Scholar
Liem, K. F. 1980. Acquisition of energy by teleosts: adaptive mechanisms and evolutionary patterns. In Ali, M. A. (ed.) Environmental physiology of fishes, 299334. New York: Plenum press and Springer.CrossRefGoogle Scholar
Moy-Thomas, M. A. & Dyne, M. B. 1938. The actinopterygian fishes from the Lower Carboniferous of Glencartholm, Eskdale, Dumfriesshire. Transactions of the Royal Society of Edinburgh 59, 437480.CrossRefGoogle Scholar
Moy-Thomas, J. A. & Miles, R. S. 1971. Palaeozoic fishes. London: Chapman and Hall, 260 pp.CrossRefGoogle Scholar
Poyato-Ariza, F. J. 2005. Pycnodont fishes: morphologic variation, ecomorphologic plasticity, and a new interpretation of their evolutionary history. Bulletin of the Kitakyushu Museum of Natural History and Human History Series a (Natural History) 3, 169–84.Google Scholar
Pruvost, P. 1919. Introduction à l'étude du terrain houiller du Nord et du Pas-De-Calais : la faune continentale du terrain houiller du Nord de la France. Doctoral thesis, University of Lille.Google Scholar
Sallan, L. C. & Coates, M. I. 2013. Styracopterid (Actinopterygii) ontogeny and the multiple origins of post-Hangenberg deep-bodied fishes. Zoological Journal of the Linnean Society 169, 156–99. https://doi.org/10.1111/zoj.12054CrossRefGoogle Scholar
Satterfield, D. S., Claverie, T. & Wainwright, P. C. 2022. Data from: body shape and mode of propulsion do not constrain routine swimming in coral reef fishes. Functional Ecology 37, 343–57. https://doi.org/10.1111/1365-2435.14227CrossRefGoogle Scholar
Traquair, R. H. 1875. On some fossil fishes from the neighbourhood of Edinburgh. Annals and Magazine of Natural History 15, 258–68. https://doi.org/10.1080/00222937508681073CrossRefGoogle Scholar
Traquair, R. H. 1878–80. X. On the structure and affinities of the Platysomidæ. Proceedings of the Royal Society of Edinburgh 29, 343–91.CrossRefGoogle Scholar
Wainwright, P. C. & Bellwood, D. 2002. Ecomorphology of feeding in coral reef fishes. In Sale, P. S. (ed.) Coral reef fishes: dynamics and diversity in a complex ecosystem, 532. San Diego, CA: Elsevier. https://doi.org/10.1016/B978-012615185-5/50004-9Google Scholar
Wainwright, P. C. & Richard, B. A. 1995. Predicting patterns of prey use from morphology of fishes. Environmental Biology of Fishes 44, 97113. https://doi.org/10.1007/BF00005909CrossRefGoogle Scholar
Watson, D. M. S. 1928. On some points of the structure of palaeoniscid and allied fishes. Proceedings of the Zoological Society of London 1928, 4970.CrossRefGoogle Scholar
Woodward, A.S. 1891. Catalogue of the fossil fishes in the British Museum (Natural History). London: British Museum.Google Scholar
Young, J. 1866. Notice of new genera of Carboniferous Glyptodipterines. Quarterly Journal of the Geological Society 22, 596608.Google Scholar