Equation (4.2) in Grue (Reference Grue2017) employs the approximation $\unicode[STIX]{x2202}\unicode[STIX]{x1D719}_{F}/\unicode[STIX]{x2202}t\simeq -p/\unicode[STIX]{x1D70C}$ ( $\unicode[STIX]{x1D719}_{F}$ the potential at the surface, $p$ the given surface pressure, $\unicode[STIX]{x1D70C}$ the density). This is a valid approximation in the supercritical case with $Fr^{2}=U^{2}/gh\gg 1$ ( $U$ the speed of the moving pressure, $g$ the acceleration due to gravity, $h$ the water depth, $Fr$ the depth Froude number). In the subcritical case with $Fr^{2}=U^{2}/gh<1$ the hydrostatic term in the dynamic boundary condition at the free surface gives a significant contribution, however. This results in a multiplicative factor of $-Fr^{2}/(1-Fr^{2})$ of the asymptotic upstream wave elevations derived in § 4. The revised result is obtained from the linear free surface boundary condition: $\unicode[STIX]{x2202}^{2}\unicode[STIX]{x1D719}/\unicode[STIX]{x2202}t^{2}+g\unicode[STIX]{x2202}\unicode[STIX]{x1D719}/\unicode[STIX]{x2202}y=-\unicode[STIX]{x2202}(p/\unicode[STIX]{x1D70C})/\unicode[STIX]{x2202}t$ , at $y=0$ , where $\unicode[STIX]{x1D719}$ is the velocity potential. In a frame of reference moving with the speed $U$ of the surface pressure, along the $x_{1}$ -direction, where $\unicode[STIX]{x2202}/\unicode[STIX]{x2202}t=-U\unicode[STIX]{x2202}/\unicode[STIX]{x2202}x_{1}$ , the free surface boundary condition becomes $U^{2}\unicode[STIX]{x2202}^{2}\unicode[STIX]{x1D719}_{F}/\unicode[STIX]{x2202}x_{1}^{2}+g\unicode[STIX]{x2202}\unicode[STIX]{x1D719}/\unicode[STIX]{x2202}y=(U/\unicode[STIX]{x1D70C})\unicode[STIX]{x2202}p/\unicode[STIX]{x2202}x_{1}$ . Fourier transformation gives
where a hat denotes a Fourier transform and $\boldsymbol{k}=(k_{1},k_{2})$ is the wavenumber in Fourier space. The normal velocity $\unicode[STIX]{x2202}\unicode[STIX]{x1D719}/\unicode[STIX]{x2202}y$ is connected to the velocity potential at the free surface by the solution of the Laplace equation, expressed in terms of the Fourier transform, for a fluid layer of constant depth $h$ by $\widehat{\unicode[STIX]{x2202}\unicode[STIX]{x1D719}/\unicode[STIX]{x2202}y}=k\tanh kh\,\hat{\unicode[STIX]{x1D719}}_{F}=(\unicode[STIX]{x1D714}^{2}/g)\hat{\unicode[STIX]{x1D719}}_{F}$ , giving
and yielding
where $k=|\boldsymbol{k}|$ and the spectral wave speed $c=\unicode[STIX]{x1D714}/k\rightarrow \sqrt{gh}$ for $k\rightarrow 0$ . The constant ${\mathcal{C}}$ is positive in the subcritical case ( $Fr^{2}<1$ ) and negative for $(k_{1}^{2}/k^{2})Fr^{2}>1$ . The product $Fr^{2}{\mathcal{C}}\rightarrow -1$ for $Fr^{2}\gg 1$ . The two-dimensional case gives the coefficient as ${\mathcal{C}}_{0}=1/(1-Fr^{2})$ , yielding $\unicode[STIX]{x2202}\unicode[STIX]{x1D719}_{F}/\unicode[STIX]{x2202}t=Fr^{2}{\mathcal{C}}_{0}\,p/\unicode[STIX]{x1D70C}$ .
In three dimensions, in the subcritical case, we obtain
Assuming that the pressure distribution is a delta function in the two horizontal directions with $p(x_{1},x_{2})=\unicode[STIX]{x1D70C}gV_{0}\unicode[STIX]{x1D6FF}(x_{1})\unicode[STIX]{x1D6FF}(x_{2})$ where $V_{0}$ is the volume of the pressure distribution, its Fourier transform becomes $\hat{p}=\unicode[STIX]{x1D70C}gV_{0}$ . Evaluating the inverse Fourier transform of the first term on the right-hand side of (0.4) gives
The contribution to the right-hand side of (4.1) becomes
The contribution to the Fourier-transformed wave elevation becomes
The successive contributions from the expansion give
which replaces (4.4) in § 4, where ${\mathcal{C}}_{0}=1+Fr^{2}+Fr^{4}+\cdots =1/(1-Fr^{2})$ ( $Fr^{2}<1$ ). The subsequent results for the elevations in § 4 are multiplied by the factor $-Fr^{2}{\mathcal{C}}_{0}$ . The asymptotics show a leading wave of elevation, for a positive step with $\unicode[STIX]{x0394}h>0$ ; see the corrected figure 1. This correction does not affect the results of the fully dispersive calculations.