Equation (4.2) in Grue (Reference Grue2017) employs the approximation
$\unicode[STIX]{x2202}\unicode[STIX]{x1D719}_{F}/\unicode[STIX]{x2202}t\simeq -p/\unicode[STIX]{x1D70C}$
(
$\unicode[STIX]{x1D719}_{F}$
the potential at the surface,
$p$
the given surface pressure,
$\unicode[STIX]{x1D70C}$
the density). This is a valid approximation in the supercritical case with
$Fr^{2}=U^{2}/gh\gg 1$
(
$U$
the speed of the moving pressure,
$g$
the acceleration due to gravity,
$h$
the water depth,
$Fr$
the depth Froude number). In the subcritical case with
$Fr^{2}=U^{2}/gh<1$
the hydrostatic term in the dynamic boundary condition at the free surface gives a significant contribution, however. This results in a multiplicative factor of
$-Fr^{2}/(1-Fr^{2})$
of the asymptotic upstream wave elevations derived in § 4. The revised result is obtained from the linear free surface boundary condition:
$\unicode[STIX]{x2202}^{2}\unicode[STIX]{x1D719}/\unicode[STIX]{x2202}t^{2}+g\unicode[STIX]{x2202}\unicode[STIX]{x1D719}/\unicode[STIX]{x2202}y=-\unicode[STIX]{x2202}(p/\unicode[STIX]{x1D70C})/\unicode[STIX]{x2202}t$
, at
$y=0$
, where
$\unicode[STIX]{x1D719}$
is the velocity potential. In a frame of reference moving with the speed
$U$
of the surface pressure, along the
$x_{1}$
-direction, where
$\unicode[STIX]{x2202}/\unicode[STIX]{x2202}t=-U\unicode[STIX]{x2202}/\unicode[STIX]{x2202}x_{1}$
, the free surface boundary condition becomes
$U^{2}\unicode[STIX]{x2202}^{2}\unicode[STIX]{x1D719}_{F}/\unicode[STIX]{x2202}x_{1}^{2}+g\unicode[STIX]{x2202}\unicode[STIX]{x1D719}/\unicode[STIX]{x2202}y=(U/\unicode[STIX]{x1D70C})\unicode[STIX]{x2202}p/\unicode[STIX]{x2202}x_{1}$
. Fourier transformation gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20170727032901033-0895:S0022112017003913:S0022112017003913_eqn1.gif?pub-status=live)
where a hat denotes a Fourier transform and
$\boldsymbol{k}=(k_{1},k_{2})$
is the wavenumber in Fourier space. The normal velocity
$\unicode[STIX]{x2202}\unicode[STIX]{x1D719}/\unicode[STIX]{x2202}y$
is connected to the velocity potential at the free surface by the solution of the Laplace equation, expressed in terms of the Fourier transform, for a fluid layer of constant depth
$h$
by
$\widehat{\unicode[STIX]{x2202}\unicode[STIX]{x1D719}/\unicode[STIX]{x2202}y}=k\tanh kh\,\hat{\unicode[STIX]{x1D719}}_{F}=(\unicode[STIX]{x1D714}^{2}/g)\hat{\unicode[STIX]{x1D719}}_{F}$
, giving
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20170727032901033-0895:S0022112017003913:S0022112017003913_eqn2.gif?pub-status=live)
and yielding
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20170727032901033-0895:S0022112017003913:S0022112017003913_eqn3.gif?pub-status=live)
where
$k=|\boldsymbol{k}|$
and the spectral wave speed
$c=\unicode[STIX]{x1D714}/k\rightarrow \sqrt{gh}$
for
$k\rightarrow 0$
. The constant
${\mathcal{C}}$
is positive in the subcritical case (
$Fr^{2}<1$
) and negative for
$(k_{1}^{2}/k^{2})Fr^{2}>1$
. The product
$Fr^{2}{\mathcal{C}}\rightarrow -1$
for
$Fr^{2}\gg 1$
. The two-dimensional case gives the coefficient as
${\mathcal{C}}_{0}=1/(1-Fr^{2})$
, yielding
$\unicode[STIX]{x2202}\unicode[STIX]{x1D719}_{F}/\unicode[STIX]{x2202}t=Fr^{2}{\mathcal{C}}_{0}\,p/\unicode[STIX]{x1D70C}$
.
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary-alt:20170727155428-53321-mediumThumb-S0022112017003913_fig1g.jpg?pub-status=live)
Figure 1. Asymptotic upstream waves. Delta function moving over a bottom step,
$\unicode[STIX]{x0394}h>0$
,
$Fr=0.5$
,
$t^{\ast }=t\sqrt{g/h}=30$
, 90. Stationary phase, ——; wave front expressions, – – –. (a) Two dimensions. (b) Three dimensions.
In three dimensions, in the subcritical case, we obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20170727032901033-0895:S0022112017003913:S0022112017003913_eqn4.gif?pub-status=live)
Assuming that the pressure distribution is a delta function in the two horizontal directions with
$p(x_{1},x_{2})=\unicode[STIX]{x1D70C}gV_{0}\unicode[STIX]{x1D6FF}(x_{1})\unicode[STIX]{x1D6FF}(x_{2})$
where
$V_{0}$
is the volume of the pressure distribution, its Fourier transform becomes
$\hat{p}=\unicode[STIX]{x1D70C}gV_{0}$
. Evaluating the inverse Fourier transform of the first term on the right-hand side of (0.4) gives
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20170727032901033-0895:S0022112017003913:S0022112017003913_eqn5.gif?pub-status=live)
The contribution to the right-hand side of (4.1) becomes
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20170727032901033-0895:S0022112017003913:S0022112017003913_eqn6.gif?pub-status=live)
The contribution to the Fourier-transformed wave elevation becomes
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20170727032901033-0895:S0022112017003913:S0022112017003913_eqn7.gif?pub-status=live)
The successive contributions from the expansion give
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20170727032901033-0895:S0022112017003913:S0022112017003913_eqn8.gif?pub-status=live)
which replaces (4.4) in § 4, where
${\mathcal{C}}_{0}=1+Fr^{2}+Fr^{4}+\cdots =1/(1-Fr^{2})$
(
$Fr^{2}<1$
). The subsequent results for the elevations in § 4 are multiplied by the factor
$-Fr^{2}{\mathcal{C}}_{0}$
. The asymptotics show a leading wave of elevation, for a positive step with
$\unicode[STIX]{x0394}h>0$
; see the corrected figure 1. This correction does not affect the results of the fully dispersive calculations.