Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T23:18:28.577Z Has data issue: false hasContentIssue false

Appendix E - Effects of the Advocacy Environment and Electoral Insecurity on Reputation Formation in the House

from Appendices

Published online by Cambridge University Press:  18 November 2021

Katrina F. McNally
Affiliation:
Eckerd College, Florida

Summary

Type
Chapter
Information
Representing the Disadvantaged
Group Interests and Legislator Reputation in US Congress
, pp. 237 - 256
Publisher: Cambridge University Press
Print publication year: 2021
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NC
This content is Open Access and distributed under the terms of the Creative Commons Attribution licence CC-BY-NC 4.0 https://creativecommons.org/cclicenses/

Appendix E Effects of the Advocacy Environment and Electoral Insecurity on Reputation Formation in the House

Tables E-1 and E-2 display the results for the analysis of the electoral insecurity hypothesis and the collective amplification hypothesis. The effects of the total number of advocates within the House resemble those of the Senate — for nearly all groups, having a greater number of advocates in the House makes it more likely that a member will also make the decision to form a reputation as a group advocate. The effects of electoral insecurity, however, are different in the House than they are in the Senate. While a senator’s most recent vote share does not have a significant impact on their representational decision-making, it does have a significant effect in the House, under some circumstances. For groups that are generally considered to be highly deserving of government assistance, like seniors and veterans, a member’s electoral security does not change the likelihood that they will choose to serve as a group advocate. But for most groups that are considered to be less deserving of assistance, members with more marginal prior election vote totals are less likely to risk forming a reputation as a group advocate. This demonstrates that while in the Senate, there is no margin at which senators feel comfortable as a disadvantaged group advocate, members of the House of Representatives who hold safer seats are significantly more likely to serve as a group advocate, even for groups that are not considered highly deserving of government assistance.

Table E-1 Institutional and electoral effects on member reputation for advocacy for veterans, seniors, racial/ethnic minorities, and the LGBTQ community in the House of Representatives (1993–2014)

VeteransSeniorsLGBTQRace/Ethnicity
012012logit012
Total0.0270.0770.2640.0250.008−0.0090.2170.025−0.0270.073
Advocates0.450.200.360.000.360.670.060.290.370.13
Previous−0.0050.013−0.0100.005−0.0100.0080.0200.0240.0350.018
Vote Share0.520.170.800.450.240.820.180.000.000.24
Group0.1970.2650.4170.0970.1190.0911.9370.0490.0610.054
Size0.000.000.000.000.000.480.000.000.000.00
Ambient0.0490.0960.013−0.0160.086−0.0940.040−0.010−0.058−0.044
Temperature0.100.120.890.660.330.610.200.770.170.56
Republican−0.468−0.901−1.237−0.814−1.073−1.570−1.308−1.854−2.218−2.890
0.020.020.120.000.000.100.040.000.000.01
Dem Pres0.0020.0230.0340.016−0.005−0.0960.054−0.033−0.055−0.034
Vote0.860.270.630.200.790.220.180.070.020.24
South0.0500.3060.3830.029−0.281−1.6670.221−0.073−0.0500.340
0.830.520.590.890.470.200.700.790.880.44
1990s−0.2401.5405.6400.097−0.607−1.7522.4710.6411.382−1.453
0.830.380.440.630.110.030.000.210.030.18
2000s−0.612−0.265−0.8001.1590.2831.628−2.667
0.030.610.380.110.730.130.14
First−1.091−0.805−1.201−1.788
Term0.000.000.140.00
Constant−8.441−19.010−24.111−4.130−10.1207.896−14.208−4.201−0.423−4.834
0.010.000.110.170.150.610.000.140.890.33
N2,1751,7402,1752,175
Wald’s Chi2123.4163.268.7434.1
Pseudo-R20.07420.07080.19770.3185

Note: Coefficients for LGBTQ are estimated using logistic regression, as necessitated by the bivariate coding of the LGBTQ advocacy reputation variable. Coefficients calculated using generalized ordered logistic regression, with First Term modeled as a parallel proportional term and the rest of the independent variables modeled as partial proportional terms. Standard errors are clustered by member, and p-values are in gray. Model 0 represents the likelihood of a shift from no advocacy to superficial, secondary, or primary advocacy; Model 1 is no advocacy or superficial advocacy to primary or secondary advocacy; and Model 2 is any of the lower categories of advocacy to primary advocacy. Feeling thermometer questions for seniors were not included in the ANES of the 2010s, so the decade base category for seniors is the 2000s.

Table E-2 Institutional and electoral effects on member reputation for advocacy for immigrants, women, and the poor in the House of Representatives (1993–2014)

ImmigrantsPoorWomen
012012012
Total0.0670.066−0.1580.0160.014−0.0040.0760.0960.476
Advocates0.030.160.370.000.000.640.020.060.01
Previous0.0210.0060.0710.0130.0200.0270.005−0.0060.018
Vote Share0.060.690.010.030.010.070.430.560.28
Group0.1190.1490.3010.0600.0750.072−0.008−0.1030.017
Size0.000.000.000.000.000.000.860.290.95
Ambient−0.046−0.008−0.045−0.0070.025−0.0730.0420.040−0.102
Temperature0.040.830.490.810.580.350.070.130.33
Republican−0.618−0.394−4.552−1.179−1.830−2.081−0.713−1.291−2.823
0.040.500.010.000.000.000.000.000.00
Dem Pres−0.079−0.065−0.4040.0150.003−0.0130.0570.0750.228
Vote0.000.090.030.140.840.740.010.020.01
South−0.442−0.522−4.298−0.391−0.966−0.638−0.490−0.964−0.939
0.260.410.010.030.000.370.110.050.48
1990s0.4260.460−0.6030.0790.197−0.595−0.907−1.815−9.635
0.410.540.720.700.480.220.210.100.01
2000s−0.1590.049−1.9300.0370.121−0.112−0.822−1.751−8.018
0.520.890.100.870.700.820.190.060.00
First−1.691−1.065−1.196
Term0.000.000.00
Constant−1.346−4.92813.261−4.088−7.3240.150−9.563−5.600−24.731
0.480.050.280.060.020.980.000.330.08
N2,1752,1752,175
Wald’s Chi2370.2302.6176.4
Pseudo-R20.31210.13440.1036

Note: Coefficients calculated using generalized ordered logistic regression, with First Term modeled as a parallel proportional term and the rest of the independent variables modeled as partial proportional terms. Standard errors are clustered by member, and p-values are in gray. Model 0 represents the likelihood of a shift from no advocacy to superficial, secondary, or primary advocacy; Model 1 is no advocacy or superficial advocacy to primary or secondary advocacy; and Model 2 is any of the lower categories of advocacy to primary advocacy.

1 This greater importance of constituency level variables over individual variables is also confirmed in research by Hanretty, Lauderdale, and Vivyan, (2016) investigating British opinion regarding the EU.

2 While gender is not a strictly binary concept, data constrictions require it to be treated as such for the purposes of this project.

3 The framework for the code sequences used comes from the study replication file for Reference WawroWarshaw and Rodden (2012).

4 Because gender is coded as a dichotomous dummy variable for whether or not a respondent identifies as female, only fixed effects are modeled.

5 District-level effects are modeled for all district ambient temperature estimates, but are not included for state ambient temperature estimates.

6 For the 1990 Census, data are not available for gender by race by education by district categories, but only for race by education by district categories, so this poststratification scheme is used for this decade instead. This reduces the total number of poststratification categories to 8,700.

7 For the state ambient temperature estimates, the demographic categories used are gender by race by education by state, resulting in a total of 2,000 categories.

Footnotes

1 This greater importance of constituency level variables over individual variables is also confirmed in research by Hanretty, Lauderdale, and Vivyan, (2016) investigating British opinion regarding the EU.

2 While gender is not a strictly binary concept, data constrictions require it to be treated as such for the purposes of this project.

3 The framework for the code sequences used comes from the study replication file for Reference WawroWarshaw and Rodden (2012).

4 Because gender is coded as a dichotomous dummy variable for whether or not a respondent identifies as female, only fixed effects are modeled.

5 District-level effects are modeled for all district ambient temperature estimates, but are not included for state ambient temperature estimates.

6 For the 1990 Census, data are not available for gender by race by education by district categories, but only for race by education by district categories, so this poststratification scheme is used for this decade instead. This reduces the total number of poststratification categories to 8,700.

7 For the state ambient temperature estimates, the demographic categories used are gender by race by education by state, resulting in a total of 2,000 categories.

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×