Hostname: page-component-6587cd75c8-vj8bv Total loading time: 0 Render date: 2025-04-23T19:50:00.082Z Has data issue: false hasContentIssue false

Salidroside exerts antidepressant-like action by promoting adult hippocampal neurogenesis through SIRT1/PGC-1α signalling

Published online by Cambridge University Press:  30 September 2024

Shan Xing
Affiliation:
School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
Shuyi Xu
Affiliation:
School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
Linjiao Wang
Affiliation:
School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
Liyuan Guo
Affiliation:
Zhejiang Chinese Medical University, Hangzhou, China
Xin Zhou
Affiliation:
School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
Haoxin Wu*
Affiliation:
School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
Wei Wang*
Affiliation:
School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
Lanying Liu*
Affiliation:
Department of Psychiatry, Shanghai Mental Health Center, Shanghai, China Department of Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China Shanghai Institute of Mental Diseases of Traditional Chinese Medicine, Shanghai, China
*
Corresponding authors: Lanying Liu; Email: [email protected]; Wei Wang; Email: [email protected]; Haoxin Wu; Email: [email protected]
Corresponding authors: Lanying Liu; Email: [email protected]; Wei Wang; Email: [email protected]; Haoxin Wu; Email: [email protected]
Corresponding authors: Lanying Liu; Email: [email protected]; Wei Wang; Email: [email protected]; Haoxin Wu; Email: [email protected]

Abstract

Depression is one of the major mental disorders, which seriously endangers human health, brings a serious burden to patients’ families. In this study, we intended to further explore the antidepressant-like effect and possible molecular mechanisms of Salidroside (SAL). We built corticosterone (CORT)-induced depressive mice model and used behavioural tests to evaluate depression behaviour. To explore the molecular mechanisms of SAL, we employed a variety of methods such as immunofluorescence, western blot, pharmacological interference, etc. The results demonstrated that SAL both at 25 mg/kg and 50 mg/kg can reduce immobility time in the tail suspension test (TST). At the same time, SAL treatment could restore the reduced sugar water intake preference in the sucrose preference test (SPT) in CORT-induced depressive mice and reduce the immobility time in TST and forced swimming experiments (FST). In addition, SAL treatment reversed the reduction in the number of Ki-67, BrdU, and NeuN in the hippocampus due to CORT treatment. SAL treatment also restored the expression of SIRT1, PGC-1α, brain-derived neurotrophic factor (BDNF) and other proteins in the hippocampus. In addition, after blocking SIRT1 signalling with EX527, we found that the treatment with SAL failed to reduce the immobility time in TST and FST, the level of SIRT1 and PGC-1α activity were correspondingly downregulated, and the expression of DCX and Ki-67 in the hippocampus failed to be activated. These findings suggested that SAL exerts antidepressant-like effects by promoting hippocampal neurogenesis through the SIRT1/PGC-1α signalling pathway.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Scandinavian College of Neuropsychopharmacology

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Shan Xing, Shuyi Xu and Linjiao Wang contributed equally to this work.

References

Abe-Higuchi, N, Uchida, S, Yamagata, H, Higuchi, F, Hobara, T, Hara, K, Kobayashi, A and Watanabe, Y (2016) Hippocampal sirtuin 1 signaling mediates depression-like behavior. Biological Psychiatry 80, 815826. DOI: 10.1016/j.biopsych.2016.01.009.CrossRefGoogle ScholarPubMed
Aftanas, LI, Markov, AA, Rikita, MV and Danilenko, KV (2020) P.326 efficacy of resveratrol in the treatment of unipolar depression: double-blind randomized placebo-controlled parallel-group study. European Neuropsychopharmacology 40, S189. DOI: 10.1016/j.euroneuro.2020.09.248.CrossRefGoogle Scholar
Babaei, A, Nourshahi, M, Fani, M, Entezari, Z, Jameie, SB and Haghparast, A (2021) The effectiveness of continuous and interval exercise preconditioning against chronic unpredictable stress: involvement of hippocampal PGC-1α/FNDC5/BDNF pathway. Journal of Psychiatric Research 136, 173183. DOI: 10.1016/j.jpsychires.2021.02.006.CrossRefGoogle ScholarPubMed
Badr, AM, Attia, HA and Al-Rasheed, N (2020) Oleuropein reverses repeated corticosterone-induced depressive-like behavior in mice: evidence of modulating effect on biogenic amines. Scientific Reports 10, 3336. DOI: 10.1038/s41598-020-60026-1.CrossRefGoogle ScholarPubMed
Bai, X-L, Deng, X-L, Wu, G-J, Li, W-J and Jin, S (2019) Rhodiola and salidroside in the treatment of metabolic disorders. Mini-Reviews in Medicinal Chemistry 19, 16111626. DOI: 10.2174/1389557519666190903115424.CrossRefGoogle ScholarPubMed
Bohara, RA, Tabassum, N, Singh, MP, Gigli, G, Ragusa, A and Leporatti, S (2022) Recent overview of resveratrols beneficial effects and its nano-delivery systems. Molecules 27, 5154. DOI: 10.3390/molecules27165154.CrossRefGoogle ScholarPubMed
Calabrese, EJ, Dhawan, G, Kapoor, R, Agathokleous, E and Calabrese, V (2023) Rhodiola rosea and salidroside commonly induce hormesis, with particular focus on longevity and neuroprotection. Chemico-Biological Interactions 380, 110540. DOI: 10.1016/j.cbi.2023.110540.CrossRefGoogle ScholarPubMed
Cao, W, Dou, Y and Li, A (2018a) Resveratrol boosts cognitive function by targeting SIRT1. Neurochemical Research 43, 9 17051713. DOI: 10.1007/s11064-018-2586-8.CrossRefGoogle ScholarPubMed
Chai, Y, Cai, Y, Fu, Y, Wang, Y, Zhang, Y, Zhang, X, Zhu, L, Miao, M and Yan, T (2022a) Salidroside ameliorates depression by suppressing NLRP3-mediated pyroptosis via P2X7/NF-κB/NLRP3 signaling pathway. Frontiers in Pharmacology 13, 812362. DOI: https://doi.org/10.3389/fphar.2022.812362.CrossRefGoogle ScholarPubMed
Chai, Y, Cai, Y, Fu, Y, Wang, Y, Zhang, Y, Zhang, X, Zhu, L, Miao, M and Yan, T (2022b) Salidroside ameliorates depression by suppressing NLRP3-mediated pyroptosis via P2X7/NF-κB/NLRP3 signaling pathway. Frontiers in Pharmacology 13, 812362. DOI: 10.3389/fphar.2022.812362.CrossRefGoogle ScholarPubMed
Chen, M-H, Liu, X-Z, Qu, X-W, Guo, R-B, Zhang, L, Kong, L, Yu, Y, Liu, Y, Zang, J, Li, X-Y and Li, X-T (2023) ApoE-modified liposomes encapsulating resveratrol and salidroside alleviate manifestations of alzheimers disease in APP/PS-1 mice. Drug Development and Industrial Pharmacy 49, 559571. DOI: 10.1080/03639045.2023.CrossRefGoogle ScholarPubMed
CONVERGE consortium, Cai, N., Bigdeli, T.B., Kretzschmar, W., Li, Yihan, Liang, J., Song, L., Hu, Jingchu, Li, Q., Jin, W., Hu, Z., Wang, Guangbiao, Wang, Linmao, Qian, P., Liu, Yuan, Jiang, T., Lu, Y., Zhang, X., Yin, Y., Li, Yingrui, Xu, X., Gao, J., Reimers, M., Webb, T., Riley, B., Bacanu, S., Peterson, R.E., Chen, Yiping, Zhong, H., Liu, Z., Wang, Gang, Sun, J., Sang, H., Jiang, G., Zhou, X., Li, Yi, Li, Yi, Zhang, W., Wang, Xueyi, Fang, X., Pan, R., Miao, G., Zhang, Q., Hu, Jian, Yu, F., Du, B., Sang, W., Li, Keqing, Chen, G., Cai, M., Yang, L., Yang, D., Ha, B., Hong, X., Deng, H., Li, G., Li, Kan, Song, Y., Gao, S., Zhang, J., Gan, Z., Meng, H., Pan, J., Gao, C., Zhang, K., Sun, N., Li, Youhui, Niu, Q., Zhang, Y., Liu, Tieqiao, Hu, C., Zhang, Z., Lv, L., Dong, J., Wang, Xiaoping, Tao, M., Wang, Xumei, Xia, J., Rong, H., He, Q., Liu, Tiebang, Huang, G., Mei, Q., Shen, Z., Liu, Ying, Shen, J., Tian, T., Liu, X., Wu, W., Gu, D., Fu, G., Shi, J., Chen, Yunchun, Gan, X., Liu, L., Wang, Lina, Yang, F., Cong, E., Marchini (2015) Sparse whole-genome sequencing identifies two loci for major depressive disorder. J, Nature 523, 588591. DOI: 10.1038/nature14659.CrossRefGoogle Scholar
Cui, Z, Zhao, Xingtao, Amevor, FK, Du, X, Wang, Y, Li, D, Shu, G, Tian, Y and Zhao, Xiaoling (2022) Therapeutic application of quercetin in aging-related diseases: SIRT1 as a potential mechanism. Frontiers in Immunology 13, 943321. DOI: 10.3389/fimmu.2022.943321.CrossRefGoogle ScholarPubMed
Du, L-L, Xie, J-Z, Cheng, X-S, Li, X-H, Kong, F-L, Jiang, X, Ma, Z-W, Wang, J-Z, Chen, C and Zhou, X-W (2014) Activation of sirtuin 1 attenuates cerebral ventricular streptozotocin-induced tau hyperphosphorylation and cognitive injuries in rat hippocampi. AGE 36, 613623. DOI: 10.1007/s11357-013-9592-1.CrossRefGoogle ScholarPubMed
Duman, RS, Aghajanian, GK, Sanacora, G and Krystal, JH (2016) Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nature Medicine 22, 238249. DOI: 10.1038/nm.4050.CrossRefGoogle ScholarPubMed
Fan, Y, Bi, Y and Chen, H (2021) Salidroside improves chronic stress induced depressive symptoms through microglial activation suppression. Frontiers in Pharmacology 12, 635762. DOI: 10.3389/fphar.2021.635762.CrossRefGoogle ScholarPubMed
Hassamal, S (2023) Chronic stress, neuroinflammation, and depression: an overview of pathophysiological mechanisms and emerging anti-inflammatories. Frontiers in Psychiatry 14, 1130989. DOI: 10.3389/fpsyt.2023.1130989.CrossRefGoogle ScholarPubMed
Hu, R, Wang, Ming-qing, Ni, S, Wang, Ming, Liu, L, You, H, Wu, X, Wang, Y, Lu, L and Wei, L (2020) Salidroside ameliorates endothelial inflammation and oxidative stress by regulating the AMPK/NF-κB/NLRP3 signaling pathway in AGEs-induced HUVECs. European Journal of Pharmacology 867, 172797. DOI: 10.1016/j.ejphar.2019.172797.CrossRefGoogle ScholarPubMed
Jablonska, B, Gierdalski, M, Chew, L-J, Hawley, T, Catron, M, Lichauco, A, Cabrera-Luque, J, Yuen, T, Rowitch, D and Gallo, V (2016) SIRT1 regulates glial progenitor proliferation and regeneration in white matter after neonatal brain injury. Nature Communications 7, 13866. DOI: 10.1038/ncomms13866.CrossRefGoogle Scholar
Jellinger, KA (2023) The heterogeneity of late-life depression and its pathobiology: a brain network dysfunction disorder. Journal of Neural Transmission 130, 10571076. DOI: 10.1007/s00702-023-02648-z.CrossRefGoogle ScholarPubMed
Keller, J, Gomez, R, Williams, G, Lembke, A, Lazzeroni, L, Murphy, GM and Schatzberg, AF (2017) HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition. Molecular Psychiatry 22, 527536. DOI: 10.1038/mp.2016.120.CrossRefGoogle ScholarPubMed
Kinlein, SA, Phillips, DJ, Keller, CR and Karatsoreos, IN (2019) Role of corticosterone in altered neurobehavioral responses to acute stress in a model of compromised hypothalamic-pituitary-adrenal axis function. Psychoneuroendocrinology 102, 248255. DOI: 10.1016/j.psyneuen.2018.12.010.CrossRefGoogle Scholar
Kishi, T, Yoshimura, R, Kitajima, T, Okochi, T, Okumura, T, Tsunoka, T, Yamanouchi, Y, Kinoshita, Y, Kawashima, K, Fukuo, Y, Naitoh, H, Umene-Nakano, W, Inada, T, Nakamura, J, Ozaki, N and Iwata, N (2010) SIRT1 gene is associated with major depressive disorder in the Japanese population. Journal of Affective Disorders 126, 1-2 167173. DOI: 10.1016/j.jad.2010.04.003.CrossRefGoogle ScholarPubMed
Kojima, J, Dai, Y, Suzuki, T, Ono, M and Nishi, H (2023) Sirtuin 1 is a potential therapeutic candidate gene for fetal growth restriction via insulin-like 4. The Journal of Maternal-Fetal & Neonatal Medicine 36. DOI: 10.1080/14767058.2023.2253486.CrossRefGoogle ScholarPubMed
Lei, Y, Wang, J, Wang, D, Li, C, Liu, B, Fang, X, You, J, Guo, M and Lu, X-Y (2020) SIRT1 in forebrain excitatory neurons produces sexually dimorphic effects on depression-related behaviors and modulates neuronal excitability and synaptic transmission in the medial prefrontal cortex. Molecular Psychiatry 25, 10941111. DOI: 10.1038/s41380-019-0352-1.CrossRefGoogle ScholarPubMed
Li, D, Fu, Y, Zhang, W, Su, G, Liu, B, Guo, M, Li, F, Liang, D, Liu, Z, Zhang, X, Cao, Y, Zhang, N and Yang, Z (2013) Salidroside attenuates inflammatory responses by suppressing nuclear factor-κB and mitogen activated protein kinases activation in lipopolysaccharide-induced mastitis in mice. Inflammation Research 62, 915. DOI: 10.1007/s00011-012-0545-4.CrossRefGoogle ScholarPubMed
Li, H and Chen, C (2017) Inhibition of autophagy enhances synergistic effects of salidroside and anti-tumor agents against colorectal cancer. BMC Complementary and Alternative Medicine 17, 538. DOI: 10.1186/s12906-017-2046-z.CrossRefGoogle ScholarPubMed
Libert, S, Pointer, K, Bell, EL, Das, A, Cohen, DE, Asara, JM, Kapur, K, Bergmann, S, Preisig, M, Otowa, T, Kendler, KS, Chen, X, Hettema, JM, van den Oord, EJ, Rubio, JP and Guarente, L (2011) SIRT1 activates MAO-A in the brain to mediate anxiety and exploratory drive. Cell 147, 14591472. DOI: 10.1016/j.cell.2011.10.054.CrossRefGoogle ScholarPubMed
Lv, P, Zuo, Z, Liu, W, Zhao, L, Wang, Y, Wang, X, Yu, S, Yu, H, Zhang, T, Bi, J and Liu, X (2023) Salidroside alleviates diabetic cognitive dysfunction via B3galt2/F3/Contactin signaling pathway in mice. Neuroscience 512, 4758. DOI: 10.1016/j.neuroscience.2022.12.008.CrossRefGoogle ScholarPubMed
Ma, X-L, Shen, M-N, Hu, B, Wang, B-L, Yang, W-J, Lv, L-H, Wang, H, Zhou, Y, Jin, A-L, Sun, Y-F, Zhang, C-Y, Qiu, S-J, Pan, B-S, Zhou, J, Fan, J, Yang, X-R and Guo, W (2019) CD73 promotes hepatocellular carcinoma progression and metastasis via activating PI3K/AKT signaling by inducing Rap1-mediated membrane localization of P110β and predicts poor prognosis. Journal of Hematology & Oncology 12, 37. DOI: 10.1186/s13045-019-0724-7.CrossRefGoogle ScholarPubMed
Mao, Q-Q, Huang, Z, Ip, S-P, Xian, Y-F and Che, C-T (2012) Protective effects of piperine against corticosterone-induced neurotoxicity in PC12 cells. Cellular and Molecular Neurobiology 32, 531537. DOI: 10.1007/s10571-011-9786-y.CrossRefGoogle ScholarPubMed
McEwen, BS, Bowles, NP, Gray, JD, Hill, MN, Hunter, RG, Karatsoreos, IN and Nasca, C (2015) Mechanisms of stress in the brain. Nature Neuroscience 18, 13531363. DOI: 10.1038/nn.4086.CrossRefGoogle ScholarPubMed
Michan, S, Li, Y, Chou, MM-H, Parrella, E, Ge, H, Long, JM, Allard, JS, Lewis, K, Miller, M, Xu, W, Mervis, RF, Chen, J, Guerin, KI, Smith, LEH, McBurney, MW, Sinclair, DA, Baudry, M, De Cabo, R and Longo, VD (2010) SIRT1 is essential for normal cognitive function and synaptic plasticity. Journal of Neuroscience 30, 96959707. DOI: 10.1523/JNEUROSCI.0027-10.2010.CrossRefGoogle ScholarPubMed
Monchaux De Oliveira, C, Pourtau, L, Vancassel, S, Pouchieu, C, Capuron, L, Gaudout, D and Castanon, N (2021) Saffron extract-induced improvement of depressive-like behavior in mice is associated with modulation of monoaminergic neurotransmission. Nutrients 13, 904. DOI: 10.3390/nu13030904.CrossRefGoogle ScholarPubMed
Ng, F (2015) SIRT1 in the brain—connections with aging-associated disorders and lifespan, frontiers in cellular neuroscience . Frontiers in Cellular Neuroscience 9. DOI: 10.3389/fncel.2015.00064.CrossRefGoogle Scholar
Pan, J, Zhu, J, Li, L, Zhang, T and Xu, Z (2023) Salidroside attenuates LPS-induced kidney injury through activation of SIRT1/Nrf2 pathway. Human & Experimental Toxicology 42, 096032712311695. DOI: 10.1177/09603271231169520.CrossRefGoogle ScholarPubMed
Pandi, A, Sattu, K, Kalappan, VM, Lal, V, Varikasuvu, SR, Ganguly, A and Prasad, J (2022) Pharmacological effects of D-pinitol – a comprehensive review. Journal of Food Biochemistry 46. DOI: 10.1111/jfbc.v46.10.CrossRefGoogle ScholarPubMed
Panossian, A, Hambardzumyan, M, Hovhanissyan, A and Wikman, G (2007) The adaptogens Rhodiola and Schizandra modify the response to immobilization stress in rabbits by suppressing the increase of phosphorylated stress-activated protein kinase, nitric oxide and cortisol. Drug Target Insights 2, 117739280700200. DOI: 10.1177/117739280700200011.CrossRefGoogle ScholarPubMed
Panossian, A, Nikoyan, N, Ohanyan, N, Hovhannisyan, A, Abrahamyan, H, Gabrielyan, E and Wikman, G (2008) Comparative study of Rhodiola preparations on behavioral despair of rats. Phytomedicine 15, 8491. DOI: 10.1016/j.phymed.2007.10.003.CrossRefGoogle ScholarPubMed
Pastor, RF, Restani, P, Di Lorenzo, C, Orgiu, F, Teissedre, P-L, Stockley, C, Ruf, JC, Quini, CI, Garcìa Tejedor, N, Gargantini, R, Aruani, C, Prieto, S, Murgo, M, Videla, R, Penissi, A and Iermoli, RH (2019) Resveratrol, human health and winemaking perspectives. Critical Reviews in Food Science and Nutrition 59, 8 12371255. DOI: 10.1080/10408398.2017.1400517.CrossRefGoogle ScholarPubMed
Pedersen, BK (2019) Physical activity and muscle-brain crosstalk. Nature Reviews Endocrinology 15, 383392. DOI: 10.1038/s41574-019-0174-x.CrossRefGoogle ScholarPubMed
Phillips, C (2017) Brain-derived neurotrophic factor, depression, and physical activity: making the neuroplastic connection. Neural Plasticity 2017, 117. DOI: 10.1155/2017/7260130.Google ScholarPubMed
Qiu, X, Lu, P, Zeng, X, Jin, S and Chen, X (2023) Study on the mechanism for SIRT1 during the process of exercise improving depression. Brain Sciences 13, 719. DOI: 10.3390/brainsci13050719.CrossRefGoogle Scholar
Qu, B, Liu, X, Liang, Y, Zheng, K, Zhang, C and Lu, L (2022) Salidroside in the treatment of NAFLD/NASH. Chemistry & Biodiversity 19, e202200401. DOI: 10.1002/cbdv.202200401.CrossRefGoogle ScholarPubMed
Ryan, KM, Patterson, I and McLoughlin, DM (2019) Peroxisome proliferator-activated receptor gamma co-activator-1 alpha in depression and the response to electroconvulsive therapy. Psychological Medicine 49, 18591868. DOI: 10.1017/S0033291718002556.CrossRefGoogle ScholarPubMed
Sun, Y, Zhang, H, Wu, Z, Yu, X, Yin, Y, Qian, S, Wang, Z, Huang, J, Wang, W, Liu, T, Xue, W and Chen, G (2021) Quercitrin rapidly alleviated depression-like behaviors in lipopolysaccharide-treated mice: the involvement of PI3K/AKT/NF-κB signaling suppression and CREB/BDNF signaling restoration in the hippocampus. ACS Chemical Neuroscience 12, 33873396. DOI: 10.1021/acschemneuro.1c00371.CrossRefGoogle ScholarPubMed
Taliaz, D, Stall, N, Dar, DE and Zangen, A (2010) Knockdown of brain-derived neurotrophic factor in specific brain sites precipitates behaviors associated with depression and reduces neurogenesis. Molecular Psychiatry 15, 8092. DOI: 10.1038/mp.2009.67.CrossRefGoogle ScholarPubMed
Torrens-Spence, MP, Pluskal, T, Li, F-S, Carballo, V and Weng, J-K (2018) Complete pathway elucidation and heterologous reconstitution of Rhodiola salidroside biosynthesis. Molecular Plant 11, 205217. DOI: 10.1016/j.molp.2017.12.007.CrossRefGoogle ScholarPubMed
Tunc-Ozcan, E, Peng, C-Y, Zhu, Y, Dunlop, SR, Contractor, A and Kessler, JA (2019) Activating newborn neurons suppresses depression and anxiety-like behaviors. Nature Communications 10, 3768. DOI: 10.1038/s41467-019-11641-8.CrossRefGoogle ScholarPubMed
Vasileva, LV, Saracheva, KE, Ivanovska, MV, Petrova, AP, Marchev, AS, Georgiev, MI, Murdjeva, MA and Getova, DP (2018) Antidepressant-like effect of salidroside and curcumin on the immunoreactivity of rats subjected to a chronic mild stress model. Food and Chemical Toxicology 121, 604611. DOI: 10.1016/j.fct.2018.09.065.CrossRefGoogle ScholarPubMed
Wang, J, Tang, J, Liang, X, Luo, Y, Zhu, P, Li, Y, Xiao, K, Jiang, L, Yang, H, Xie, Y, Zhang, L, Deng, Y, Li, J and Tang, Y (2021) Hippocampal PGC-1α-mediated positive effects on parvalbumin interneurons are required for the antidepressant effects of running exercise. Translational Psychiatry 11, 222. DOI: 10.1038/s41398-021-01339-1.CrossRefGoogle ScholarPubMed
Wang, X, Qian, J, Meng, Y, Wang, P, Cheng, R, Zhou, G, Zhu, S and Liu, C (2023) Salidroside ameliorates severe acute pancreatitis-induced cell injury and pyroptosis by inactivating akt/NF-κB and caspase-3/GSDME pathways. Heliyon 9, e13225. DOI: 10.1016/j.heliyon.2023.e13225.CrossRefGoogle ScholarPubMed
Wątroba, M, Szewczyk, G and Szukiewicz, D (2023) The role of Sirtuin-1 (SIRT1) in the physiology and pathophysiology of the human placenta. International Journal of Molecular Sciences 24, 16210. DOI: 10.3390/ijms242216210.CrossRefGoogle ScholarPubMed
Yan, L, Liu, C, Xu, L, Qian, Y, Song, P, Wei, M and Liu, B (2023) Alpha-asarone modulates kynurenine disposal in muscle and mediates resilience to stress-induced depression via PGC-1α induction. CNS Neuroscience & Therapeutics 29, 941956. DOI: 10.1111/cns.14030.CrossRefGoogle ScholarPubMed
Zhang, L, Tu, R, Wang, Y, Hu, Y, Li, X, Cheng, X, Yin, Y, Li, W and Huang, H (2017) Early-life exposure to lead induces cognitive impairment in elder mice targeting SIRT1 phosphorylation and oxidative alterations. Frontiers in Physiology 8, 446. DOI: 10.3389/fphys.2017.00446.CrossRefGoogle ScholarPubMed
Zhang, Y, Huang, R, Cheng, M, Wang, L, Chao, J, Li, J, Zheng, P, Xie, P, Zhang, Z and Yao, H (2019) Gut microbiota from NLRP3-deficient mice ameliorates depressive-like behaviors by regulating astrocyte dysfunction via circHIPK2. Microbiome 7, 116. DOI: 10.1186/s40168-019-0733-3.CrossRefGoogle ScholarPubMed
Supplementary material: File

Xing et al. supplementary material

Xing et al. supplementary material
Download Xing et al. supplementary material(File)
File 2.9 MB