Hostname: page-component-669899f699-2mbcq Total loading time: 0 Render date: 2025-04-24T22:23:36.998Z Has data issue: false hasContentIssue false

WinClbclas, a Windows program for columbite-supergroup minerals

Published online by Cambridge University Press:  02 May 2024

Fuat Yavuz*
Affiliation:
Department of Geological Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey

Abstract

A Microsoft® Visual Basic software, WinClbclas, has been developed to calculate the chemical formulae of columbite-supergroup minerals based on data obtained from wet-chemical and electron-microprobe analyses and using the current nomenclature scheme adopted by the Commission on New Minerals, Nomenclature and Classification (CNMNC) of the International Mineralogical Association (IMA) for columbite-supergroup minerals. The program evaluates 36 IMA-approved species, three questionable in terms of their unit-cell parameters, four insufficiently studied questionable species and one ungrouped species, all according to the dominant valance and constituent status in five mineral groups including ixiolite (MO2), wolframite (M1M2O4), samarskite (ABM2O8), columbite (M1M2O6) and wodginite (M1M2M32O8). Mineral compositions of the columbite supergroup are calculated on the basis of 24 oxygen atoms per formula unit. However, the formulae of the five ixiolite to wodginite groups can be estimated by the program on the basis of their cation and anion values in their typical mineral formulae (e.g. 4 cations and 8 oxygens for the wodginite group) with normalisation procedures. The Fe3+ and Fe2+ contents from microprobe-derived total FeO (wt.%) amounts are estimated by stoichiometric constraints. WinClbclas allows users to: (1) enter up to 47 input variables for mineral compositions; (2) type and load multiple columbite-supergroup mineral compositions in the data entry section; (3) edit and load the Microsoft® Excel files used in calculating, classifying, and naming the columbite-supergroup minerals, together with the total monovalent to hexavalent ion; and (4) store all the calculated parameters in the output of a Microsoft® Excel file for further data evaluation. The program is distributed as a self-extracting setup file, including the necessary support files used by the program, a help file and representative sample data files.

Type
Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Associate Editor: Koichi Momma

References

Alekseev, V.I. (2023) Wodginite as an indicator mineral of tantalum-bearing pegmatites and granites. Journal of Mining Institute, 262, 114. https://doi.org/10.31897/PMI.2023.19.Google Scholar
Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (2001–2005) Handbook of Mineralogy. Mineralogical Society of America, Chantilly, Virginia 20151–1110, USA. Available from, http://www.handbookofmineralogy.org. [Date accessed: February 25, 2024].Google Scholar
Aurisicchio, C., Orlandi, P., Pasero, M. and Perchiazzi, N. (1993) Uranopolycrase, the uranium-dominant analogue of polycrase-(Y), a new mineral from Elba Island, Italy, and its crystal structure. European Journal of Mineralogy, 5, 11611165.Google Scholar
Aurisicchio, C., De Vito, C., Ferrini, V. and Orlandi, P. (2002) Nb and ta oxide minerals in the Fonte del Prete Granitic Pegmatite Dike, island of Elba, Italy. The Canadian Mineralogist, 40, 799814.Google Scholar
Baumgartner, R., Romer, R.L., Moritz, R., Sallet, R. and Chiaradia, M. (2006) Columbite–tantalite-bearing granitic pegmatites from the Seridó Belt, Northeastern Brazil: genetic constraints from U–Pb dating and Pb isotopes. The Canadian Mineralogist, 44, 6986.Google Scholar
Bergstøl, S. and Juve, G. (1988) Scandian ixiolite, pyrochlore and bazzite in granite pegmatite in Tordal, Telemark, Norway. A contribution to the mineralogy and geochemistry of scandium and tin. Mineralogy and Petrology, 38, 229243.Google Scholar
Beurlen, H., Da Silva, M.R.R., Thomas, R., Soares, D.R. and Oliver, P. (2008) Nb–Ta–(Ti–Sn) oxide mineral chemistry as tracer of rare-element granitic pegmatite fractionation in the Borborema Province, Northeastern Brazil. Mineralium Deposita, 43, 207228.Google Scholar
Černý, P. and Ercit, T.S. (1985) Some recent advances in the mineralogy and geochemistry of Nb and Ta in rare-element granitic pegmatites. Bulletin de Minéralogie, 108, 499532.Google Scholar
Černý, P. and Ercit, T.S. (1989) Mineralogy of Niobium and Tantalum: crystal chemical relationships, paragenetic aspects and their implications. Pp. 2779 in: Lanthanides, Tantalum, Niobium (Moeller, P., Černý, P. and Saupé, F., editors). Springer, Berlin Heidelberg New York.Google Scholar
Černý, P., Goad, B.E., Hawthorne, F.C. and Chapman, R. (1986) Fractionation trends of the Nb- and Ta-bearing oxide minerals in the Greer Lake pegmatitic granite and its pegmatite aureole, southeastern Manitoba. American Mineralogist, 71, 501517.Google Scholar
Černý, P., Ercit, T.S. and Wise, M.A. (1992) The Tantalite-Tapiolite gap: natural assemblages versus experimental data. The Canadian Mineralogist, 30, 587596.Google Scholar
Chukanov, N.V., Pasero, M., Aksenov, S.M., Britvin, S.N., Zubkova, N.V., Yike, L. and Witzke, T. (2023a) Columbite supergroup minerals: nomenclature and classification. Mineralogical Magazine, 87, 1833.Google Scholar
Chukanov, N.V., Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Shelukhina, Y.S., Britvin, S.N. and Pushcharovsky, D.Y. (2023b) Nioboixiolite-(Mn2+), (Nb2/3Mn2+1/3)O2, a new ixiolite-group mineral from the Malkhan pegmatite field, Transbaikal region, Russia. Zapiski RMQ (Proceedings of the Russian Mineralogical Society), 152, 817.Google Scholar
d'Aquin Tumukunde, T. and Piestrzynski, A. (2018) Vein-type tungsten deposits in Rwanda, Rutsiro area of the Karagwe-Ankole Belt, Central Africa. Ore Geology Reviews, 102, 505518.Google Scholar
Dias, C.H. and Chavez, M.L.S.C. (2015) Uncommon Nb-tantalate from the Cachoeira mine, Araçuaí pegmatite district (Minas Gerais). Geosciences, 68, 401408.Google Scholar
Droop, G.T.R. (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses using stoichiometric criteria. Mineralogical Magazine, 51, 431435.Google Scholar
Ercit, T.S. (1994) The geochemistry and crystal chemistry of columbite-group minerals from granitic pegmatites, southwestern Grenville Province, Canadian Shield. The Canadian Mineralogist, 32, 421438.Google Scholar
Ercit, T.S., Hawthorne, F.C. and Černý, P. (1992) The wodginite group. I. Structural crystallography. The Canadian Mineralogist, 30, 597611.Google Scholar
Ercit, T.S., Wise, M.A. and Černý, P. (1995) Compositional and structural systematics of the columbite group. American Mineralogist, 80, 613619.Google Scholar
Galliski, M.Á., Černý, P., Marquez-Zavalía, M.F. and Chapman, R. (1999) Ferrotitanowodginite, Fe2+TiTa2O8, a new mineral of the wodginite group from the San Elías pegmatite, San Luis, Argentina. American Mineralogist, 84, 773777.Google Scholar
Galliski, M.Á., Márquez-Zavalía, M.F., Černý, P., Lira, R., Colombo, F., Roberts, A.C. and Bernhardt, H-J. (2016) Achalaite, Fe2+TiNb2O8, a new member of the wodginite group from the La Calandria granitic pegmatıte, Córdoba, Argentina. The Canadian Mineralogist, 54, 10431052.Google Scholar
Guastoni, A., Secco, L., Škoda, R., Nestola, F., Schiazza, M., Novák, M. and Pennacchioni, G. (2019) Non-metamict aeschynite-(Y), polycrase-(Y), and samarskite-(Y) in NYF Pegmatites from Arvogno, Vigezzo Valley (Central Alps, Italy). Minerals, 9, 313.Google Scholar
Hanson, S.L., Falster, A.U., Simmons, W.B., Sprague, R., Vignola, P., Rotiroti, N., Andó, S. and Hatert, F. (2018) Tantalowodginite (Mn0.50.5TaTa2O8. A new mineral from the Emmons pegmatite, Uncle Tom Mountain, Maine, USA. The Canadian Mineralogist, 56, 543553.Google Scholar
Li, Y., Ke, C., Wang, D., Chen, Z., Li, G., Wang, A., Li, R., Hu, L., Yu, H. and Zhao, Y. (2023) Nioboixiolite-(□), IMA 2021-002a. CNMNC Newsletter 71. Mineralogical Magazine, 87, 332335.Google Scholar
Lima-de-Faria, J. (2012) The close packing in the classification of minerals. European Journal of Mineralogy, 24, 163169.Google Scholar
Llorens, T. and Moro, M.C. (2012) Oxide minerals in the granitic cupola of the Jálama Batholith, Salamanca, Spain. Part II: Sn, W and Ti minerals in intra-granitic quartz veins. Journal of Geosciences, 57, 155171.Google Scholar
López de Azarevich, V., Fulignati, P., Gioncada, A. and Azarevich, M. (2021) Rare element minerals’ assemblage in El Quemado pegmatites (Argentina): insights for pegmatite melt evolution from gahnite, columbite-group minerals and tourmaline chemistry and implications for minerogenesis. Mineralogy and Petrology, 115, 497518.Google Scholar
Lykova, I., Rowe, R., Poirier, G., Mcdonald, A.M. and Giester, G. (2021) Nioboheftetjernite, ScNbO4, a new mineral from the Befanamo pegmatıte, Madagascar. The Canadian Mineralogist, 59, 445452.Google Scholar
Mackay, D.A.R. and Simandl, G.J. (2015). Pyrochlore and columbite-tantalite as indicator minerals for specialty metal deposits. Geochemistry: Exploration, Environment, Analysis, 15, 167178.Google Scholar
Melcher, F., Graupner, T., Göbler, H-E., Sitnikova, M., Oberthür, T., Gerdes, A., Badanina, E. and Chudy, T. (2017) Mineralogical and chemical evolution of tantalum–(niobium–tin) mineralisation in pegmatites and granites. Part 2: Worldwide examples (excluding Africa) and an overview of global metallogenetic patterns. Ore Geology Reviews, 89, 946987.Google Scholar
Michaud, J.A-S. and Pichavant, M. (2019) The H/F ratio as an indicator of contrasted wolframite deposition mechanisms. Ore Geology Reviews, 104, 266272.Google Scholar
Miyawaki, R., Yokoyama, K., Matsubar, S., Fruta, H., Gomi, A. and Murakami, R. (2010) Huanzalaite, MgWO4, a new mineral species from the Huanzala Mine, Peru. The Canadian Mineralogist, 48, 105112.Google Scholar
Miyawaki, R., Hatert, F., Pasero, M. and Mills, S.J. (2022) Newsletter 68. Mineralogical Magazine, 86, 854859, https://doi.org/10.1180/mgm.2022.93.Google Scholar
Monnier, L., Salvi, S., Melleton, J., Bailly, L., Béziat, D., de Parseval, P., Gouy, S. and Lach, P. (2019) Multiple generations of wolframite mineralization in the Echassieres District (Massif Central, France). Minerals, 9, 637.Google Scholar
Novák, M., Johan, Z., Škoda, R., Černý, P., Šrein, V. and Veselovský, F. (2008) Primary oxide minerals in the system WO3–Nb2O5–TiO2–Fe2O3–FeO and their breakdown products from the pegmatite No. 3 at Dolní Bory-Hatě, Czech Republic. European Journal of Mineralogy, 20, 487499.Google Scholar
Novák, M., Chládek, S., Uher, P. and Gadas, P. (2018) Complex magmatic and subsolidus compositional trends of columbite–tantalite in the beryl–columbite Šejby granitic pegmatite, Czech Republic: role of crystal-structural constraints and associated minerals. Journal of Geosciences, 63, 253263.Google Scholar
Pautov, L.A., Mirakov, M.A., Sokolova, E., Day, M.C., Hawthorne, F.C., Schodibekov, M.A., Karpenko, V.Y., Makhmadsharif, S. and Faiziev, A.R. (2022) Shakhdaraite-(Y), ScYNb2O8, from the Leskhozovskaya granitic pegmatite, The Valley of the Shakhdara River, South-Western Pamir, Gorno-Badakhshanskii Autonomous Region, Tajikistan: New mineral description and crystal structure. The Canadian Mineralogist, 60, 369382.Google Scholar
Pieczka, A., Szuszkiewicz, A., Szełęg, E., Ilnickki, S., Nrjbert, K. and Turinak, K. (2014) Samarskite-group minerals and alteration products: an example from the Julianna pegmatitic system, Piława Górna, SW Poland. The Canadian Mineralogist, 52, 303319.Google Scholar
Raslan, M.F. (2008) Occurrence of ishikawaite (uranium-rich samarskite) in the mineralized Abu Rushied Gneiss, Southeastern Desert, Egypt. International Geology Review, 50, 11321140.Google Scholar
René, M. (2019). Nb–Ta–Ti Oxides in Topaz Granites of the Geyersberg Granite Stock (Erzgebirge Mts., Germany). Minerals, 9, 155.Google Scholar
Ryznar, J., Pršek, J., Wlodek, A. and Uher, P. (2023) Mineralogy and chemistry of columbite-tantalite from Bugarura-Kuluti area, Karagwe-Ankole Belt, Rwanda: Indicators of pegmatite and granite evolution. Ore Geology Reviews, 159, 105574.Google Scholar
Sanchez-Segado, S., Monti, T., Katrib, J., Kingman, S., Dodds, C. and Jha, A. (2017) Towards sustainable processing of columbite group minerals: elucidating the relation between dielectric properties and physico-chemical transformations in the mineral phase. Scientific Reports, 7, 18016.Google Scholar
Simandl, G.J., Burt, R.O., Trueman, D.L. and Paradis, S. (2018) Economic geology models 2. Tantalum and niobium: deposits, resources, exploration methods and market - A primer for geoscientists. Geoscience Canada, 45, 8596.Google Scholar
Tindle, A.G. and Breaks, F.W. (2000) Tantalum mineralogy of rare-element granitic pegmatites from the Separation Lake area, northwestern Ontario; Ontario Geological Survey, Open File Report, 6022, 378.Google Scholar
Tindle, A.G., Breaks, F.W. and Webb, P.C. (1998). Wodginite-group minerals from the Separation Rapids rare-element granitic pegmatite group, northwestern Ontario. The Canadian Mineralogist, 36, 637658.Google Scholar
Tindle, A.G., Breaks, F.W. and Selway, J.B. (2002) Tourmaline in petalite-subtype granitic pegmatites: evidence of fractionation and contamination from the Pakegama lake and separation lake areas of northwestern Ontario, Canada. The Canadian Mineralogist, 40, 753788.Google Scholar
Udoratina, O.V., Panikorovskii, T.L., Chukanov, N.V., Voronin, M.V., Luteov, V.P., Agakhanov, A.A. and Isaenko, S.I. (2024) Dmitryvarlamovite, Ti2(Fe3+Nb)O8, a new columbite-supergroup mineral related to the wolframite group. Mineralogical Magazine, 88, 147154, https://doi.org/10.1180/mgm.2023.95Google Scholar
Wenger, M., Armbruster, T. and Geiger, C.A. (1991) Cation distribution in partially ordered columbite from the Kings Mountain pegmatite, North Carolina. American Mineralogist, 76, 18971904.Google Scholar
Wise, M.A., Černý, P. and Falster, A.U. (1998) Scandium substitution in columbite-group minerals and ixiolite. The Canadian Mineralogist, 36, 673680.Google Scholar
Yavuz, F. (1999) A revised program for microprobe-derived amphibole analyses using the IMA rules. Computers & Geosciences, 25, 909927.Google Scholar
Yavuz, F. (2001a) PYROX: A computer program for the IMA pyroxene classification and calculation scheme. Computers & Geosciences, 27, 97107.Google Scholar
Yavuz, F. (2001b) NBTA: A program for columbite-group minerals in rare-element granites and granitic pegmatites. Computers & Geosciences, 27, 241248.Google Scholar
Yavuz, F. (2003) Evaluating micas in petrologic and metallogenic aspect: I-definitions and structure of the computer program MICA+. Computers & Geosciences, 29, 12031213.Google Scholar
Yavuz, F. (2007) WinAmphcal: A windows program for the IMA-04 amphibole classification. Geochemistry Geophysics Geosystems, 8, Q01004. https://doi.org/10.1029/2006GC001391.Google Scholar
Yavuz, F. (2013) WinPyrox: A Windows program for pyroxene calculation classification and thermobarometry. American Mineralogist, 98, 13381359.Google Scholar
Yavuz, F. and Yavuz, V. (2023a) WinApclas, A Windows program for apatite supergroup minerals. Periodico di Mineralogia, 92, 307333.Google Scholar
Yavuz, F. and Yavuz, V. (2023b) WinSpingc, a Windows program for spinel supergroup minerals. Journal of Geosciences, 68, 95110.Google Scholar
Yavuz, F. and Yavuz, V. (2024) WinPclclasc, A Windows program for pyrochlore supergroup minerals. The Canadian Journal of Mineralogy and Petrology, 62, 165185.Google Scholar
Yavuz, F. and Yıldırım, D.K. (2020) WinGrt, a Windows program for garnet supergroup minerals. Journal of Geosciences, 65, 7195.Google Scholar
Yavuz, F., Karakaya, N., Yıldırım, D.K., Karakaya, M.Ç. and Kumral, M. (2014) A Windows program for calculation and classification of tourmaline-supergroup (IMA-2011). Computers & Geosciences, 63, 7087.Google Scholar
Yavuz, F., Kumral, M., Karakaya, N., Karakaya, M.Ç. and Yıldırım, D.K. (2015) A Windows program for chlorite calculation and classification. Computers & Geosciences, 81, 101113.Google Scholar
Zhou, Q., Qin, K. and Tang, D. (2021) Mineralogy of columbite-group minerals from the rare-element pegmatite dykes in the East-Qinling orogen, central China: Implications for formation times and ore genesis. Journal of Asian Earth Sciences, 218, 104879.Google Scholar
Zwaan, J.C., Falster, A.U. and Simmons, W.B. (2016) Tantalite-(Mn) from Grangal, Nuristan, Afghanistan. The Journal of Gemmology, 35, 111114.Google Scholar
Supplementary material: File

Yavuz supplementary material

Yavuz supplementary material
Download Yavuz supplementary material(File)
File 12 MB