Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T05:51:47.298Z Has data issue: false hasContentIssue false

A global higher regularity result for the static relaxed micromorphic model on smooth domains

Published online by Cambridge University Press:  20 May 2024

Dorothee Knees
Affiliation:
Institute of Mathematics, University of Kassel, Heinrich-Plett Str. 40, 34132 Kassel, Germany ([email protected])
Sebastian Owczarek
Affiliation:
Faculty of Mathematics and Information Science, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland ([email protected])
Patrizio Neff
Affiliation:
Lehrstuhl für Nichtlineare Analysis und Modellierung, Fakultät für Mathematik, Universität Duisburg-Essen, Campus Essen, Thea-Leymann Str. 9, 45127 Essen, Germany ([email protected])
Rights & Permissions [Opens in a new window]

Abstract

We derive a global higher regularity result for weak solutions of the linear relaxed micromorphic model on smooth domains. The governing equations consist of a linear elliptic system of partial differential equations that is coupled with a system of Maxwell-type. The result is obtained by combining a Helmholtz decomposition argument with regularity results for linear elliptic systems and the classical embedding of $H(\operatorname {div};\Omega )\cap H_0(\operatorname {curl};\Omega )$ into $H^1(\Omega )$.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

1. Introduction

The relaxed micromorphic model is a novel generalized continuum model allowing to describe size effects and band-gap behaviour of microstructured solids with effective equations ignoring the detailed microstructure [Reference Alberdi, Robbins, Walsh and Dingreville2, Reference Demore, Rizzi, Collet, Neff and Madeo6, Reference Ghiba, Neff, Madeo, Placidi and Rosi8, Reference Madeo, Neff, Ghiba and Rosi21, Reference Neff, Ghiba, Madeo, Placidi and Rosi25, Reference Owczarek, Ghiba and Neff28]. As a micromorphic model it couples the classical displacement $u:\Omega \subset \mathbb{R} ^3\to \mathbb{R} ^3$ with a non-symmetric tensor field $P:\Omega \subset \mathbb{R} ^3\to \mathbb{R} ^{3\times 3}$ called the microdistortion through the variational problem

(1.1)\begin{equation} \begin{aligned} & \int_{\Omega}\Big(\big\langle {\mathbb{C}_{{\rm e}}}\operatorname{sym}(\mathrm{D} u-P),\operatorname{sym}(\mathrm{D} u-P)\big\rangle\\ & \quad +\big\langle{\mathbb{C}_{{\rm micro}}}\operatorname{sym} P,\operatorname{sym} P\big\rangle + \big\langle{\mathbb{L}}_{{\rm c}}\operatorname{Curl} P,\operatorname{Curl} P\big\rangle\\ & \quad-\langle f,u\rangle-\langle M,P\rangle\Big)\,{\mathrm d} x\quad\longrightarrow \text{min w.r.t. }(u,P), \end{aligned} \end{equation}

subject to suitable boundary conditions. The tensor ${\mathbb {L}}_{{\rm c}}$ introduces a size-dependence into the model in the sense that smaller samples respond relatively stiffer. The existence and uniqueness in the static case follows from the incompatible Korn's inequality [Reference Gmeineder, Lewintan and Neff13, Reference Lewintan, Müller and Neff18Reference Lewintan and Neff20, Reference Neff, Pauly and Witsch27]. The constitutive tensors ${\mathbb {C}_{{\rm e}}}$, ${\mathbb {C}_{{\rm micro}}}$ and ${\mathbb {L}}_{{\rm c}}$ are to be found by novel homogenization strategies [Reference Neff, Eidel, d'Agostino and Madeo23, Reference Sarhil, Scheunemann, J. Schröder and Neff35Reference Schröder, Sarhil, Scheunemann and Neff37]. Letting ${\mathbb {C}_{{\rm micro}}}\rightarrow +\infty$ the models response tends to the linear Cosserat model [Reference Ghiba, Rizzi, Madeo and Neff9]. A range of engineering relevant analytical solutions are already available for the relaxed micromorphic model [Reference Rizzi, Hütter, Khan, Ghiba, Madeo and Neff34]. The solution is naturally found as $u\in H^1(\Omega )$ and $P\in H(\operatorname {Curl};\Omega )$, thus the microdistortion $P$ may have jumps in normal direction. The implementation in the finite element context needs standard element formulations for the displacement $u$, but e.g. Nédélec - spaces for $P$ in order to achieve optimal convergence rates [Reference Rizzi, d'Agostino, Neff and Madeo33, Reference Schröder, Sarhil, Scheunemann and Neff37Reference Sky, Neunteufel, Münch, Schöberl and Neff40].

However, it is sometimes preferred to circumvent the Nédélec - framework and to work with $H^1(\Omega )$ for the microdistortion tensor $P$. For these cases it is mandatory to clarify in advance whether the regularity of $P$ allows for a faithful result. In this spirit, we continue here the investigation of regularity in the static case and we will be able to derive a global higher regularity result for weak solutions of the relaxed micromorphic model (global as opposed to only interior regularity). It extends the local result from [Reference Knees, Owczarek and Neff15] to smooth domains. The latter is formulated on a bounded domain $\Omega \subset \mathbb{R} ^3$ and the Euler-Lagrange equations to (1.1) read as follows ([Reference Alberdi, Robbins, Walsh and Dingreville2, Reference Ghiba, Neff, Madeo, Placidi and Rosi8, Reference Neff, Ghiba, Madeo, Placidi and Rosi25, Reference Owczarek, Ghiba and Neff28, Reference Owczarek, Ghiba and Neff29]): given positive definite and symmetric material dependent coefficient tensors $\mathbb{C} _e:\Omega \rightarrow \operatorname{Lin} (\operatorname {Sym}(3),\,\operatorname {Sym}(3))$, $\mathbb{C} _\text {micro}:\Omega \rightarrow \operatorname{Lin} (\operatorname {Sym}(3),\,\operatorname {Sym}(3))$ and $\mathbb{L} _c:\Omega \rightarrow \operatorname{Lin} (\mathbb{R} ^{3\times 3},\,\mathbb{R} ^{3\times 3})$ determine a displacement field $u:\Omega \to \mathbb{R} ^3$ and a non-symmetric microdistortion tensor $P:\Omega \to \mathbb{R} ^{3\times 3}$ satisfying

(1.2)\begin{align} 0& =\operatorname{Div}\Big(\mathbb{C}_e\operatorname{sym}(\mathrm{D} u - P)\Big) + f\quad \text{in }\Omega,\nonumber\\ 0& ={-}\operatorname{Curl}\Big(\mathbb{L}_c\operatorname{Curl} P\big) + \mathbb{C}_e\operatorname{sym}(\mathrm{D} u - P) - \mathbb{C}_\text{micro}\operatorname{sym} P + M\quad \text{in }\Omega \end{align}

together with suitable boundary conditions. Here, $f:\Omega \to \mathbb{R} ^3$ is a given volume force density, $M:\Omega \to \mathbb{R} ^{3\times 3}$ a body moment tensor and $\sigma =\mathbb{C} _e\operatorname {sym}(\mathrm {D} u - P)$ is the symmetric force stress tensor while $m={\mathbb {L}}_{{\rm c}}\operatorname {Curl} P$ is the non-symmetric moment tensor.

The main result of the present contribution is theorem 4.1 which states that on smooth domains and with smooth coefficients weak solutions of (1.2) are more regular and satisfy

(1.3)\begin{align} u\in H^2(\Omega),\quad\, P\in H^1(\Omega)\,,\quad\, \sigma\in H^1(\Omega) \,, \quad\, m\in H(\operatorname{Curl};\Omega) \,, \quad \, \operatorname{Curl} m \in H^1(\Omega), \end{align}

where the last regularity in (1.3) follows from equation (1.2). Moreover, if $\mathbb{L} _c$ has a special block diagonal structure (see corollary 4.2), then we in addition have

(1.4)\begin{equation} m\in H^1(\Omega),\quad\, \operatorname{Curl} P\in H^1(\Omega). \end{equation}

The results (1.3) are obtained by a combination of the Helmholtz decomposition for the matrix field $P$, regularity results for linear elliptic systems of elasticity-type and the classical Maxwell embedding recalled in theorem 2.4. The additional regularity formulated in (1.4) relies on a weighted version of the Maxwell embedding theorem, [Reference Weber42].

2. Background from function space theory

2.1 Notation, assumptions

For vectors $a,\,b\in \mathbb{R} ^3$, we define the scalar product $\langle a,\,b\rangle :=\sum _{i=1}^3 a_ib_i$, the Euclidean norm $|a|^2:=\langle a,\,a\rangle$ and the dyadic product $a\otimes b=(a_ib_j)_{i,j=1}^3\in \mathbb{R} ^{3\times 3}$, where $\mathbb{R} ^{3\times 3}$ will denote the set of real $3\times 3$ matrices. For matrices $P,\,Q\in \mathbb{R} ^{3\times 3}$, we define the standard Euclidean scalar product $\langle P,\,Q\rangle :=\sum _{i=1}^3\sum _{j=1}^3 P_{ij}Q_{ij}$ and the Frobenius-norm $\|P\|^2:=\langle P,\,P\rangle$. $P^T\in \mathbb{R} ^{3\times 3}$ denotes the transposition of the matrix $P\in \mathbb{R} ^{3\times 3}$ and for $P\in \mathbb{R} ^{3\times 3}$, the symmetric part of $P$ will be denoted by $\operatorname {sym} P={1}/{2}(P+P^T)\in \operatorname {Sym}(3)$.

Let $\Omega \subset \mathbb{R} ^3$ be a bounded domain. As a minimal requirement, we assume in this paper that the boundary $\partial \Omega$ is Lipschitz continuous, meaning that it can locally be described as the graph of a Lipschitz continuous function, see [Reference Grisvard14] for a precise definition. In a similar spirit we speak of $C^1$ or $C^{1,1}$-regular boundaries. For a function $u=(u^1,\,u^2,\,u^3)^T:\Omega \to \mathbb{R} ^3$, the differential $\mathrm {D} u$ is given by

\[ \mathrm{D} u =\begin{pmatrix} \mathrm{D} u^1\\ \mathrm{D} u^2\\ \mathrm{D} u^3 \end{pmatrix} \in \mathbb{R}^{3\times 3}, \]

with $(\mathrm {D} u^k)_{l}= \partial _{x_l} u^k$ for $1\leq k\leq 3$ and $1\leq \ell \leq 3$ and with $\mathrm {D} u^k\in \mathbb{R} ^{1\times 3}$. For a vector field $w:\Omega \to \mathbb{R} ^3$, the divergence and the curl are given as

\[ \operatorname{div} w=\sum_{i=1}^ 3 w^{i}_{, x_i},\quad \operatorname{curl} w =\big(w^{3}_{,x_2}-w^{2}_{,x_3},w^{1}_{,x_3}-w^{3}_{,x_1},w^{1}_{,x_2}-w^{2}_{,x_1}\big). \]

For tensor fields $Q:\Omega \to \mathbb{R} ^{3\times 3}$, $\operatorname {Curl} Q$ and $\operatorname {Div} Q$ are defined row-wise:

\[ \operatorname{Curl} Q=\begin{pmatrix} \operatorname{curl} Q^1 \\ \operatorname{curl} Q^2\\ \operatorname{curl} Q^3 \end{pmatrix} \in \mathbb{R}^{3\times 3},\quad \text{ and } \operatorname{Div} Q=\begin{pmatrix} \operatorname{div} Q^1 \\ \operatorname{div} Q^2 \\ \operatorname{div} Q^3 \end{pmatrix}\in \mathbb{R}^3, \]

where $Q^i$ denotes the $i$-th row of $Q$. With these definitions, for $u:\Omega \to \mathbb{R} ^3$ we have consistently $\operatorname {Curl}\mathrm {D} u=0\in \mathbb{R} ^{3 \times 3}$.

The Sobolev spaces [Reference Adams and Fournier1, Reference Girault and Raviart11] used in this paper are

\begin{align*} & H^1(\Omega)=\{u\in L^2(\Omega)\, | \mathrm{D} u\in L^2(\Omega)\}\,, \quad \|u\|^2_{H^1(\Omega)}:=\|u\|^2_{L^2(\Omega)}+\|\mathrm{D} u\|^2_{L^2(\Omega)},\\ & H({\operatorname{curl}};\Omega)=\{v\in L^2(\Omega;\mathbb{R}^d)\, |\,\, \operatorname{curl} v\in L^2(\Omega)\},\quad\|v\|^2_{H({\rm curl};\Omega)}:=\|v\|^2_{L^2(\Omega)}\\& \quad +\|{\rm curl}\, v\|^2_{L^2(\Omega)},\\ & H(\operatorname{div};\Omega)=\{v\in L^2(\Omega;\mathbb{R}^d)\, |\,\, \operatorname{div} v\in L^2(\Omega)\},\quad \|v\|^2_{H({\operatorname{div}};\Omega)}:=\|v\|^2_{L^2(\Omega)}\\& \quad+\|\operatorname{div} v\|^2_{L^2(\Omega)}, \end{align*}

spaces for tensor valued functions are denoted by $H(\operatorname {Curl};\Omega )$ and $H(\operatorname {Div};\Omega )$. Moreover, $H_0^1(\Omega )$ is the completion of $C_0^{\infty }(\Omega )$ with respect to the $H^1$-norm and $H_0({\rm curl};\Omega )$ and $H_0(\operatorname {div};\Omega )$ are the completions of $C_0^{\infty }(\Omega )$ with respect to the $H(\operatorname {curl})$-norm and the $H(\operatorname {div})$-norm, respectively. By $H^{-1}(\Omega )$ we denote the dual of $H_0^1(\Omega )$. Finally we define

(2.1)\begin{equation} \begin{aligned} H(\operatorname{div},0;\Omega) & =\{u\in H(\operatorname{div};\Omega)\, |\,\, \operatorname{div} u=0\},\\ H(\operatorname{curl},0;\Omega) & =\{u\in H(\operatorname{curl};\Omega)\, |\,\, \operatorname{curl} u=0\} \end{aligned} \end{equation}

and set

(2.2)\begin{equation} \begin{aligned} H_0(\operatorname{div},0;\Omega) & =H_0(\operatorname{div};\Omega)\cap H(\operatorname{div},0;\Omega),\\ H_0(\operatorname{curl},0;\Omega) & =H_0(\operatorname{curl};\Omega)\cap H(\operatorname{curl},0;\Omega). \end{aligned} \end{equation}

Assumption A: We assume that the coefficient functions ${\mathbb {C}_{{\rm e}}},\,{\mathbb {C}_{{\rm micro}}}$ and ${\mathbb {L}}_{{\rm c}}$ in (1.2) are fourth order elasticity tensors from $C^{0,1}(\overline \Omega ;\operatorname{Lin} (\mathbb{R} ^{3\times 3};\mathbb{R} ^{3\times 3}))$ and are symmetric and positive definite in the following sense

  1. (i) For every $\sigma,\,\tau \in \operatorname {Sym}(3)$, $\eta _1,\,\eta _2\in \mathbb{R} ^{3\times 3}$ and all $x\in \overline \Omega$:

    (2.3)\begin{align} \langle \mathbb{C}_e(x)\sigma,\tau\rangle = \langle \sigma,\mathbb{C}_e(x)\tau\rangle, \quad \langle \mathbb{C}_\text{micro}(x)\sigma,\tau\rangle & = \langle \sigma,\mathbb{C}_\text{micro}(x)\tau\rangle, \nonumber\\ \langle \mathbb{L}_c(x)\eta_1,\eta_2\rangle & = \langle\eta_1, \mathbb{L}_c(x)\eta_2\rangle. \end{align}
  2. (ii) There exists positive constants $C_{\mathrm {e}}$, $C_{\mathrm {micro}}$ and $L_{\mathrm {c}}$ such that for all $x\in \overline \Omega$, $\sigma \in \operatorname {Sym}(3)$ and $\eta \in \mathbb{R} ^{3\times 3}$:

    (2.4)\begin{equation} \langle{\mathbb{C}_{{\rm e}}}(x)\sigma,\sigma\rangle\geq C_{\mathrm{e}}|\sigma|^2 ,\quad \langle{\mathbb{C}_{{\rm micro}}}(x)\sigma,\sigma\rangle\geq C_{\mathrm{micro}}|\sigma|^2\,,\quad\,\, \langle{\mathbb{L}}_{{\rm c}}(x)\eta,\eta\rangle\geq L_{\mathrm{c}}|\eta|^2. \end{equation}

2.2 Helmholtz decomposition, embeddings, elliptic regularity

Based on the results from Section 3.3 of the book [Reference Girault and Raviart11] (Corollary $3.4$), see also [Reference Bauer, Pauly and Schomburg4, Theorem 5.3], the following version of the Helmholtz decomposition will be used:

Theorem 2.1 Helmholtz decomposition

Let $\Omega \subset \mathbb{R} ^3$ be a bounded domain with a Lipschitz boundary. Then

\[ L^2(\Omega;\mathbb{R}^3)= \mathrm{D} H_0^1(\Omega)\oplus H(\operatorname{div},0;\Omega) \]

and hence, for every $p\in L^2(\Omega ;\mathbb{R} ^3)$ there exist unique $v\in H_0^1(\Omega )$ and $q\in H (\operatorname {div},\,0;\Omega )$ such that $p=\mathrm {D} v + q$.

It is worth mentioning that in the case of the $L^2$-theory, theorem 2.1 holds for any bounded domain $\Omega \subset \mathbb{R} ^3$ without having a Lipschitz boundary, see e.g. [Reference Farwig, Kozono and Sohr7]. An immediate consequence of the Helmholtz decomposition theorem is

Proposition 2.2 Let $\Omega \subset \mathbb{R} ^3$ be a bounded domain and let $p\in L^2(\Omega )$ with $p=\mathrm {D} v + q$, where $v\in H_0^1(\Omega )$ and $q\in H(\operatorname {div},\,0;\Omega )$ are given according to the Helmholtz decomposition. Then $\mathrm {D} v\in H_0(\operatorname {curl},\,0;\Omega )$.

Proof. Notice that it is sufficient to prove that

\[ \mathrm{D} H_0^1(\Omega)\subset H_0(\operatorname{curl},0;\Omega)\,. \]

For this, let us assume that $v\in H_0^1(\Omega )$ and let $\{v_n\}\subset C_0^\infty (\Omega )$ such that $v_n\rightarrow v$ in $H^1(\Omega )$. Then, for all $\phi \in C^\infty _0(\Omega )$ we obtain

\[ \int_\Omega\langle \mathrm{D} v, \operatorname{curl}\phi\rangle\,{\mathrm d} x\leftarrow\int_\Omega\langle \mathrm{D} v_n, \operatorname{curl}\phi\rangle\,{\mathrm d} x={-}\int_\Omega\langle v_n, \operatorname{div}\operatorname{curl}\phi\rangle\,{\mathrm d} x=0 \]

and $\mathrm {D} v\in H(\operatorname {curl},\,0;\Omega )$. Moreover, $\{\mathrm {D} v_n\}\subset C_0^\infty (\Omega )\cap H_0(\operatorname {curl},\,0;\Omega )$ and $\mathrm {D} v_n\rightarrow \mathrm {D} v$ in $H(\operatorname {curl};\Omega )$. As $H_0(\operatorname {curl},\,0;\Omega )$ is a closed subspace of $H(\operatorname {curl};\Omega )$ we conclude that $\mathrm {D} v\in H_0(\operatorname {curl},\,0;\Omega )$.

In an analogous way to proposition 2.2, we can prove the following lemma, from which additional regularities will be derived for the solution of system (1.2) (see corollary 4.2).

Lemma 2.3 For any bounded domain $\Omega \subset \mathbb{R} ^3$ it holds

\[ \overline{\operatorname{curl} H_0(\operatorname{curl};\Omega)}\subset H_0(\operatorname{div},0;\Omega). \]

Proof. Let us assume that $\{E_n\}\subset C_0^\infty (\Omega )$ such that $E_n\rightarrow E$ in $H(\operatorname {curl};\Omega )$. Then, for all $\phi \in C^\infty _0(\Omega )$ we obtain

\[ \int_\Omega\langle \operatorname{curl} E, \mathrm{D}\phi\rangle\,{\mathrm d} x\leftarrow\int_\Omega\langle \operatorname{curl} E_n, \mathrm{D}\phi\rangle\,{\mathrm d} x={-}\int_\Omega\langle\operatorname{div}\operatorname{curl} E_n,\phi\rangle\,{\mathrm d} x=0 \]

and $\operatorname {curl} E\in H(\operatorname {div},\,0;\Omega )$. Moreover, $\{\operatorname {curl} E_n\}\subset C_0^\infty (\Omega )\cap H_0(\operatorname {div},\,0;\Omega )$ and $\operatorname {curl} E _n\rightarrow \operatorname {curl} E$ in $H(\operatorname {div};\Omega )$. As $H_0(\operatorname {div},\,0;\Omega )$ is a closed subspace of $H(\operatorname {div};\Omega )$ we conclude that $\operatorname {curl} E\in H_0(\operatorname {div},\,0;\Omega )$.

The next embedding theorem is for instance proved in [Reference Girault and Raviart11, Sections 3.4, 3.5] and [Reference Kuhn and Pauly16] (see [Reference Grisvard14] for properties of convex sets):

Theorem 2.4 Embedding theorem

Let $\Omega \subset \mathbb{R} ^3$ be a convex domain or a domain with a $C^{1,1}$-smooth boundary $\partial \Omega$. Then

\[ H(\operatorname{curl};\Omega)\cap H_0(\operatorname{div};\Omega)\subset H^1(\Omega),\qquad\qquad H_0(\operatorname{curl};\Omega)\cap H(\operatorname{div};\Omega)\subset H^1(\Omega) \]

and there exists a constant $C>0$ such that for every $p\in H(\operatorname {curl};\Omega )\cap H_0(\operatorname {div};\Omega )$ or $p\in H_0(\operatorname {curl};\Omega )\cap H(\operatorname {div};\Omega )$ we have

\[ \|p\|_{H^1(\Omega)}\leq C(\|p\|_{H(\operatorname{curl};\Omega)} + \|p\|_{H(\operatorname{div};\Omega)})\,. \]

A version of this result for Lipschitz domains showing $H^{{1}/{2}}(\Omega )$- regularity is given in [Reference Costabel5] (similar results for bounded strong Lipschitz domains with strong Lipschitz boundary interface parts may be found in [Reference Pauly and Schomburg31, Reference Pauly and Schomburg32]). In addition, it can be noted that convex domains are strongly Lipschitz, cf. [Reference Grisvard14]. A proof for convex domains including a family of relevant boundary conditions can be found in [Reference Pauly30]. For the previous embedding theorem there are also some versions with weights, and we cite here Theorem 2.2 from [Reference Weber42] with $k=1$ and $\ell =0$. We assume that the weight function $\varepsilon :\overline \Omega \to \mathbb{R} ^{3\times 3}$ for every $x\in \overline \Omega$ is symmetric and positive definite, uniformly in $x$.

Theorem 2.5 Let $\Omega \subset \mathbb{R} ^3$ be a bounded domain with a $C^2$-smooth boundary and let $\varepsilon \in C^1(\overline \Omega,\,\mathbb{R} ^{3\times 3})$ be a symmetric and positive definite weight function. Assume that $p:\Omega \to \mathbb{R} ^3$ belongs to one of the following spaces:

(2.5)\begin{equation} p\in H_0(\operatorname{curl};\Omega)\quad\text{and}\quad \varepsilon\, p\in H(\operatorname{div};\Omega) \end{equation}

or

(2.6)\begin{equation} p\in H(\operatorname{curl};\Omega)\quad\text{and}\quad \varepsilon\, p\in H_0(\operatorname{div};\Omega)\,. \end{equation}

Then $p\in H^1(\Omega )$ and there exists a constant $C>0$ (independent of $p$) such that

\[ \|p\|_{H^1(\Omega)}\leq C\Big(\|p\|_{H(\operatorname{curl};(\Omega)} + \|\operatorname{div} (\varepsilon p)\|_{L^2(\Omega)}\Big)\,. \]

Remark 2.6 Assuming higher regularity on the weight function $\varepsilon$ and the smoothness of $\partial \Omega$ (i.e. $\varepsilon \in C^k(\overline {\Omega },\,\mathbb{R} ^{3\times 3})$ and $\partial \Omega \in C^{k+1})$, Theorem 2.2 from [Reference Weber42] guarantees a corresponding higher regularity of $p$.

In the proof of theorem 4.1 we will decompose the microdistortion tensor $P$ as $P=\mathrm {D} q + Q$ and apply theorem 2.4 to $Q$. The regularity for the displacement field $u$ and the vector $q$ then is a consequence of an elliptic regularity result that we discuss next.

Let us consider the following auxiliary bilinear form: for $(u,\,q)\in H^1_0(\Omega ;\mathbb{R} ^{3+3})$ and $(u,\,v)\in H^1_0(\Omega ;\mathbb{R} ^{3+3})$ we define

(2.7)\begin{equation} \tilde{a}\left(\!\begin{pmatrix} u\\ q \end{pmatrix},\begin{pmatrix} v\\ w \end{pmatrix}\!\right) = \int_\Omega \langle \mathbb{A}(x)\begin{pmatrix} \operatorname{sym}\mathrm{D} u\\ \operatorname{sym}\mathrm{D} q \end{pmatrix},\quad \begin{pmatrix} \operatorname{sym}\mathrm{D} v\\ \operatorname{sym}\mathrm{D} w \end{pmatrix}\rangle\, {\mathrm d} x, \end{equation}

where $\mathbb{A} :\Omega \rightarrow (\operatorname{Lin} (\operatorname {Sym}(3),\,\operatorname {Sym}(3)))^4$ is defined by the following formula

(2.8)\begin{equation} \mathbb{A}(x)=\begin{pmatrix} {\mathbb{C}_{{\rm e}}}(x) & -{\mathbb{C}_{{\rm e}}}(x)\ - {\mathbb{C}_{{\rm e}}}(x) & {\mathbb{C}_{{\rm e}}}(x) + {\mathbb{C}_{{\rm micro}}}(x) \end{pmatrix}. \end{equation}

Corollary 2.7 Let Assumption $\bf {A}_{(ii)}$ be satisfied. Then, there exists a positive constant $C_{\mathbb{A} }$ such that for all $x\in \overline \Omega$ and $\sigma =(\sigma _1,\,\sigma _2)\in \operatorname {Sym}(3)\times \operatorname {Sym}(3)$ we have:

(2.9)\begin{equation} \langle\mathbb{A}(x)\sigma,\sigma\rangle\geq C_{\mathbb{A}}|\sigma|^2\,. \end{equation}

Proof. Fix $x\in \overline \Omega$ and $\sigma =(\sigma _1,\,\sigma _2)\in \operatorname {Sym}(3)\times \operatorname {Sym}(3)$, then

\[ \langle\mathbb{A}(x)\sigma,\sigma\rangle= \langle{\mathbb{C}_{{\rm e}}}(\sigma_1-\sigma_2),\sigma_1-\sigma_2\rangle+\langle{\mathbb{C}_{{\rm micro}}}(\sigma_2),\sigma_2\rangle\,.\nonumber \]

Assumption $\bf {A}_{(ii)}$ implies

\[ \begin{aligned} \langle\mathbb{A}(x)\sigma,\sigma\rangle & \geq C_{\mathrm{e}}|\sigma_1-\sigma_2|^2 +C_{\mathrm{micro}}|\sigma_2|^2\geq \min\{C_{\mathrm{e}},C_{\mathrm{micro}}\}\big(|\sigma_1-\sigma_2|^2+|\sigma_2|^2\big)\nonumber\\ & \geq \frac{2}{9}\min\{C_{\mathrm{e}},C_{\mathrm{micro}}\}\big(|\sigma_1|^2+|\sigma_2|^2\big)=\frac{2}{9}\min\{C_{\mathrm{e}},C_{\mathrm{micro}}\}|\sigma|^2 \end{aligned} \]

and the proof is completed.

Now, for all $(u,\,q)\in H^1_0(\Omega ;\mathbb{R} ^{3+3})$ we have

(2.10)\begin{align} \tilde{a}\left(\!\begin{pmatrix} u\\ q \end{pmatrix},\begin{pmatrix} u\\ q \end{pmatrix}\!\right)& \geq C_{\mathbb{A}}\big(\|\operatorname{sym}\mathrm{D} u\|^2_{L^2(\Omega)}+\|\operatorname{sym}\mathrm{D} q\|^2_{L^2(\Omega)}\big)\nonumber\\ & \geq C_{\mathbb{A}}\,C_{K}\big(\|u\|^2_{H^1_0(\Omega)}+\|q\|^2_{H^1_0(\Omega)}\big)\,, \end{align}

where the constant $C_{K}$ is a constant resulting from the standard Korn's inequality [Reference Neff22]. This shows that the bilinear form (2.7) is coercive on the space $H^1_0(\Omega ;\mathbb{R} ^{3+3})$. The form (2.7) defines the following auxiliary problem: for $(F_1,\,F_2)\in L^2(\Omega ;\mathbb{R} ^{3+3})$ find $(u,\,q)\in H^1_0(\Omega ;\mathbb{R} ^{3+3})$ with

(2.11)\begin{equation} \tilde{a}\big(\left(\begin{smallmatrix} u\\ q \end{smallmatrix}\right),\left(\begin{smallmatrix} v\\ w \end{smallmatrix}\right)\big)= \int_\Omega \left\langle \left(\begin{smallmatrix} F_1\\ F_2 \end{smallmatrix}\right),\left(\begin{smallmatrix} v\\ w \end{smallmatrix}\right) \right\rangle\, {\mathrm d} x \end{equation}

for all $(v,\,w)\in H^1_0(\Omega ;\mathbb{R} ^{3+3})$. Modifying the results concerning the regularity of elliptic partial differential equations, it would be possible to obtain the existence of a solution for system (2.11) with the regularity $(u,\,q)\in H^1_0(\Omega ;\mathbb{R} ^{3+3})\cap H^2(\Omega ;\mathbb{R} ^{3+3})$ (see for example [Reference Gilbarg and Trudinger10, Theorem 9.15, Section 9.6]). However, system (2.11) fits perfectly into the class considered in [Reference Neff and Knees26]. There, the global regularity of weak solutions to a quasilinear elliptic system with a rank-one-monotone nonlinearity was investigated. As an application of the result from [Reference Neff and Knees26] we obtain

Lemma 2.8 Let $\Omega \subset \mathbb{R} ^3$ be a bounded domain with a $C^{1,1}$-smooth boundary $\partial \Omega$. Let furthermore $(F_1,\,F_2)\in L^2(\Omega ;\mathbb{R} ^{3+3})$ and ${\mathbb {C}_{{\rm e}}},\,{\mathbb {C}_{{\rm micro}}}\in C^{0,1}(\overline \Omega ; \operatorname{Lin} (\mathbb{R} ^{3\times 3};\mathbb{R} ^{3\times 3}))$. Then the problem (2.11) has a unique solution $(u,\,q)\in H^1_0(\Omega ;\mathbb{R} ^{3+3})\cap H^2(\Omega ;\mathbb{R} ^{3+3})$.

Proof. Coercivity (2.10) of the bilinear form (3.1) and the Lax-Milgram theorem imply the existence of exactly one weak solution $(u,\,q)\in H^1_0(\Omega ;\mathbb{R} ^{3+3})$. In order to prove higher regularity of this solution we will use Theorem $5.2$ of [Reference Neff and Knees26].

Let us introduce $\mathbb {B}:\overline \Omega \times \mathbb{R} ^{(3+3)\times 3}\rightarrow \mathbb{R} ^{(3+3)\times 3}$ as the unique $x$-dependent linear mapping satisfying

(2.12)\begin{equation} \left\langle \mathbb{B}\Big(x, \left(\begin{smallmatrix} A_1\\ A_2 \end{smallmatrix}\right) \Big), \left(\begin{smallmatrix} B_1\\ B_2 \end{smallmatrix}\right)\rangle =\langle \mathbb{A}(x) \left(\begin{smallmatrix} \operatorname{sym} A_1\\ \operatorname{sym} A_2 \end{smallmatrix}\right),\quad \left(\begin{smallmatrix} \operatorname{sym} B_1\\ \operatorname{sym} B_2 \end{smallmatrix}\right) \right\rangle \end{equation}

for all $A_1,\,A_2,\,B_1,\,B_2\in \mathbb{R} ^{3\times 3}$ and $x\in \overline \Omega$. Then for every $x\in \overline {\Omega }$, $A=(A_1,\,A_2)\in \mathbb{R} ^{(3+3)\times 3}$, $\xi =(\xi _1,\,\xi _2)\in \mathbb{R} ^{3+3}$ and $\eta \in \mathbb{R} ^3$ we have thanks to the positive definiteness of $\mathbb{A}$

(2.13)\begin{equation} \begin{aligned} & \big\langle\,\mathbb{B}\Big(x,\left(\begin{smallmatrix} A_1\\ A_2 \end{smallmatrix}\right) +\xi\otimes\eta\Big)\\& \qquad-\mathbb{B}\Big(x, \left(\begin{smallmatrix} A_1\\ A_2 \end{smallmatrix} \right) \Big),\xi\otimes\eta\,\big\rangle\\ & \quad\geq C_{\mathbb{A}} \big(\|\operatorname{sym}(\xi_1\otimes \eta)\|^2 + \|\operatorname{sym}(\xi_2\otimes \eta)\|^2\big)\,. \end{aligned} \end{equation}

Since $\|\operatorname {sym}(\xi _i\otimes \eta )\|^2=1/2(\|\xi _i\|^2\|\eta\|^2 + \|\langle \xi _i,\,\eta \rangle\|^2)$, this ultimately implies that $\mathbb {B}$ is strongly rank-one monotone/satisfies the Legendre-Hadamard condition. Due to the Lipschitz continuity of ${\mathbb {C}_{{\rm e}}}$ and ${\mathbb {C}_{{\rm micro}}}$ the remaining assumptions of Theorem $5.2$ of [Reference Neff and Knees26] can easily be verified. Hence, [Reference Neff and Knees26, Theorem 5.2] implies $(u,\,q)\in H^2(\Omega ;\mathbb{R} ^{3+3})$.

3. Weak formulation of the relaxed micromorphic model

For $u,\,v\in H^1_0(\Omega,\,\mathbb{R} ^3)$ and $P,\,W\in H_0(\operatorname {Curl};\Omega )$ the following bilinear form is associated with the system (1.2)

(3.1)\begin{align} a\big((u,P),(v,W)\big)& =\int_{\Omega}\Big(\big\langle {\mathbb{C}_{{\rm e}}}\operatorname{sym}(\mathrm{D} u-P),\operatorname{sym}(\mathrm{D} v-W)\big\rangle\nonumber\\ & \quad +\big\langle{\mathbb{C}_{{\rm micro}}}\operatorname{sym} P,\operatorname{sym} W\big\rangle +\big\langle{\mathbb{L}}_{{\rm c}}\operatorname{Curl} P,\operatorname{Curl} W\big\rangle\Big)\,{\mathrm d} x \nonumber\\ & \equiv \int_\Omega \langle \mathbb{A} \begin{pmatrix} \operatorname{sym}\mathrm{D}\\ \operatorname{sym} P \end{pmatrix},\quad \begin{pmatrix} \operatorname{sym} \mathrm{D} v\\ \operatorname{sym} W \end{pmatrix}\rangle + \big\langle{\mathbb{L}}_{{\rm c}}\operatorname{Curl} P,\operatorname{Curl} W\big\rangle\Big)\,{\mathrm d} x \end{align}

where the tensor $\mathbb{A}$ is defined in (2.8). Here, homogeneous boundary conditions $u\big |_{\partial \Omega }=0$ and $(P\times n)\big |_{\partial \Omega }=0$ are considered.

Theorem 3.1 Existence of weak solutions

Let $\Omega \subset \mathbb{R} ^3$ be a bounded domain with a Lipschitz boundary and assume that ${\mathbb {C}_{{\rm e}}},\,{\mathbb {C}_{{\rm micro}}},\,{\mathbb {L}}_{{\rm c}}\in L^\infty (\Omega ;\operatorname{Lin} (\mathbb{R} ^{3\times 3};\mathbb{R} ^{3\times 3}))$ comply with the symmetry and positivity properties formulated in (2.3)(2.4). Then for every $f\in H^{-1}(\Omega )$ and $M\in (H_0(\operatorname {Curl};\Omega ))^{\ast }$ there exists a unique pair $(u,\,P)\in H_0^1(\Omega )\times H_0(\operatorname {Curl};\Omega )$ such that

(3.2)\begin{equation} \forall (v,W)\in H_0^1(\Omega)\times H_0(\operatorname{Curl};\Omega):\qquad \,\, a\big((u,P),(v,W)\big)=\int_{\Omega}\langle f,v\rangle + \langle M,W\rangle\,{\mathrm d} x.\end{equation}

Proof. For a bounded domain $\Omega \subset \mathbb{R} ^3$ with Lipschitz boundary $\partial \Omega$ the incompatible Korn's inequality [Reference Gmeineder, Lewintan and Neff12, Reference Lewintan and Neff19, Reference Lewintan and Neff20, Reference Neff, Pauly and Witsch27] implies that there is a constant $\tilde {c}>0$ such that

(3.3)\begin{equation} \|P\|^2_{L^2(\Omega)}\leq \tilde{c}\,\big( \|\operatorname{sym} P\|^2_{L^2(\Omega)}+\|\operatorname{Curl} P\|^2_{L^2(\Omega)}\big) \end{equation}

for all $P\in {\rm H}_0(\operatorname {Curl};\Omega )$. Positive definiteness of the tensors $\mathbb{A}$ and ${\mathbb {L}}_{{\rm c}}$ entail

(3.4)\begin{align} a\big((u,P),(u,P)\big)\geq C_{\mathbb{A}}(\|\operatorname{sym} \mathrm{D} u\|^2_{L^2(\Omega)}+\|\operatorname{sym} P\|^2_{L^2(\Omega)})+L_{\mathrm{c}}\|\operatorname{Curl} P\|^2_{L^2(\Omega)}. \end{align}

Hence, by (3.3) and Korn's inequality the bilinear form (3.1) is coercive on $H_0^1(\Omega )\times H_0(\operatorname {Curl};\Omega )$ and the Lax-Milgram theorem finishes the proof.

Thanks to the Helmholtz decomposition, weak solutions can equivalently be characterized as follows:

Lemma 3.2 Let the assumptions of theorem 3.1 be satisfied, $f\in H^{-1}(\Omega )$ and $M\in (H_0(\operatorname {Curl};\Omega ))^{\ast }$. Let furthermore $(u,\,P)\in H_0^1(\Omega )\times H_0(\operatorname {Curl};\Omega )$ and let $(q,\,Q)\in H_0^1(\Omega ;\mathbb{R} ^3)\times H(\operatorname {Div},\,0;\Omega )$ such that $P=\mathrm {D} q + Q$. Then the following (a) and (b) are equivalent:

  1. (a) $(u,\,P)$ is a weak solution of (1.2) in the sense of (3.2).

  2. (b) For all $(v,\,W)\in H_0^1(\Omega )\times H_0(\operatorname {Curl};\Omega )$ the triple $(u,\,q,\,Q)$ satisfies

    (3.5)\begin{align} \int_\Omega \langle \mathbb{A} & \begin{pmatrix} \operatorname{sym}\mathrm{D} u\\ \operatorname{sym}\mathrm{D} q + \operatorname{sym} Q \end{pmatrix},\quad \begin{pmatrix} \operatorname{sym}\mathrm{D} v\\ \operatorname{sym} W \end{pmatrix} \rangle\, {\mathrm d} x\nonumber\\ & \quad+ \int_\Omega \langle{\mathbb{L}}_{{\rm c}} \operatorname{Curl} Q,\operatorname{Curl} W\rangle\,{\mathrm d} x= \int_{\Omega}\langle f,v\rangle + \langle M,W\rangle\,{\mathrm d} x. \end{align}

Proof. $(a)\implies (b):$ Assume that $(u,\,P)\in H_0^1(\Omega )\times H_0(\operatorname {Curl};\Omega )$ is a weak solution of (1.2) in the sense of (3.2). Then theorem 2.1 implies that for $i=1,\,2,\,3$ there exists unique $q_i\in H_0^1(\Omega )$ and $Q_i\in H_0(\operatorname {Div},\,0;\Omega )$ such that $P_i=\mathrm {D} q_i + Q_i$, where $P_i$ denotes the rows of the matrix $P$. Inserting $P=(\nabla q_1 + Q_1,\, \nabla q_2 + Q_2,\, \nabla q_3 + Q_3)^T$ into (3.2) we obtain (3.5), where $Q=(Q_1,\, Q_2,\, Q_3)^T$.

$(b)\implies (a):$ Let for all $(v,\,W)\in H_0^1(\Omega )\times H_0(\operatorname {Curl};\Omega )$ the triple $(u,\,q,\,Q)\in H_0^1(\Omega ;\mathbb{R} ^3)\times H_0^1(\Omega ;\mathbb{R} ^3)\times H(\operatorname {Div},\,0;\Omega )$ satisfy (3.5). Then (3.5) can be written in the form

(3.6)\begin{align} \int_\Omega \langle\mathbb{A} & \begin{pmatrix} \operatorname{sym}\mathrm{D} u\\ \operatorname{sym}\mathrm{D} q + \operatorname{sym} Q \end{pmatrix}, \begin{pmatrix} \operatorname{sym}\mathrm{D} v\\ \operatorname{sym} W \end{pmatrix}\rangle\, {\mathrm d} x\nonumber\\ & \quad+ \int_\Omega \langle{\mathbb{L}}_{{\rm c}} \operatorname{Curl} (\mathrm{D} q+Q),\operatorname{Curl} W\rangle\,{\mathrm d} x= \int_{\Omega}\langle f,v\rangle + \langle M,W\rangle\,{\mathrm d} x \end{align}

and the function $(u,\,\mathrm {D} q+Q)$ satisfies (3.2) for all $(v,\,W)\in H_0^1(\Omega )\times H_0(\operatorname {Curl};\Omega )$. Uniqueness of a weak solution of the problem (1.2) implies that $P=\mathrm {D} q+Q$.

4. Global regularity on smooth domains

The aim of this section is to prove the following regularity theorem

Theorem 4.1 Let $\Omega \subset \mathbb{R} ^3$ be a bounded domain with a $C^{1,1}$-smooth boundary. Moreover, in addition to the assumptions of theorem 3.1 let ${\mathbb {C}_{{\rm e}}},\,{\mathbb {C}_{{\rm micro}}},\,{\mathbb {L}}_{{\rm c}}\in C^{0,1}(\overline \Omega ; \operatorname{Lin} (\mathbb{R} ^{3\times 3};\mathbb{R} ^{3\times 3}))$. Finally, we assume that $f\in L^2(\Omega )$ and $M\in H(\operatorname {Div};\Omega )$. Then for every weak solution $(u,\,P)\in H_0^1(\Omega )\times H_0(\operatorname {Curl};\Omega )$ we have

(4.1)\begin{equation} u\in H^2(\Omega),\quad P\in H^1(\Omega),\quad {\mathbb{L}}_{{\rm c}}\operatorname{Curl} P\in H(\operatorname{Curl};\Omega)\end{equation}

and there exists a constant $C>0$ (independent of $f$ and $M$) such that

(4.2)\begin{equation} \|u\|_{H^2(\Omega)} + \|P\|_{H^1(\Omega)} + \|\mathbb{L}_c\operatorname{Curl} P\|_{H(\operatorname{Curl};\Omega)} \leq C(\|f\|_{L^2(\Omega)} + \|M\|_{H(\operatorname{Div};\Omega)}).\end{equation}

The proof relies on the Helmholtz decomposition of $P$, the embedding theorem 2.4 and theorem 2.8 about the global regularity for the auxiliary problem (2.11).

Proof. Let $(u,\,P)\in H_0^1(\Omega )\times H_0(\operatorname {Curl};\Omega )$ satisfy (3.2) with $f\in L^2(\Omega )$ and $M\in H(\operatorname {Div};\Omega )$.

We first show that $(u,\,P)\in H^2(\Omega )\times H^1(\Omega )$. Let $P=\mathrm {D} q + Q$, where $q\in H_0^1(\Omega ;\mathbb{R} ^3)$ and $Q\in H(\operatorname {Div},\,0;\Omega )$ are given according to the Helmholtz decomposition. By proposition 2.2 it follows that $Q\in H(\operatorname {Div},\,0;\Omega )\cap H_0(\operatorname {Curl};\Omega )$ and thanks to the assumed regularity of $\partial \Omega$, theorem 2.4 implies that $Q\in H^1(\Omega )$. Next, choosing $W=\mathrm {D} w$ for $w\in C_0^\infty (\Omega ;\mathbb{R} ^d)$, the weak form (3.5) in combination with a density argument implies that for all $v,\,w\in H_0^1(\Omega )$ we have

(4.3)\begin{equation} \begin{aligned} & \int_\Omega \left\langle\mathbb{A} \begin{pmatrix} \operatorname{sym}\mathrm{D} u\\ \operatorname{sym}\mathrm{D} q \end{pmatrix},\quad \begin{pmatrix} \operatorname{sym}\mathrm{D} v\\ \operatorname{sym}\mathrm{D} w \end{pmatrix} \right\rangle\, {\mathrm d} x\\ & \quad =\int_\Omega \langle{\mathbb{C}_{{\rm e}}} \operatorname{sym} Q,\operatorname{sym}\mathrm{D} v\rangle\,{\mathrm d} x -\int_\Omega \langle({\mathbb{C}_{{\rm e}}} +{\mathbb{C}_{{\rm micro}}})\operatorname{sym} Q,\operatorname{sym}\mathrm{D} w\rangle\,{\mathrm d} x\\ & \qquad+\int_\Omega \langle f, v\rangle + \langle M,\mathrm{D} w\rangle\, {\mathrm d} x. \end{aligned} \end{equation}

Since $Q\in H^1(\Omega )$ and $M\in H(\operatorname {Div};\Omega )$, by partial integration the right hand side of (4.3) can be rewritten as $\int _\Omega \langle F_1,\, v\rangle + \langle F_2,\, w\rangle \textrm{d}x$ with functions $F_1,\,F_2\in L^2(\Omega )$. theorem 2.8 implies that $u,\,q\in H^2(\Omega )$ and hence $P=\mathrm {D} q +Q\in H^1(\Omega )$.

Let us next choose $v=0$ and $W\in C_0^\infty (\Omega )$ in (3.1). Rearranging the terms we find that

\begin{align*} \int_\Omega \langle {\mathbb{L}}_{{\rm c}}\operatorname{Curl} P,\operatorname{Curl} W\rangle\,{\mathrm d} x & = \int_\Omega \langle M,W\rangle\,{\mathrm d} x\\& \quad + \int_\Omega \langle{\mathbb{C}_{{\rm e}}} \operatorname{sym}\mathrm{D} u - ({\mathbb{C}_{{\rm e}}} + {\mathbb{C}_{{\rm micro}}} )\operatorname{sym} P\,,\,\operatorname{sym} W\rangle\,{\mathrm d} x \end{align*}

which implies that $\operatorname {Curl}({\mathbb {L}}_{{\rm c}}\operatorname {Curl} P)\in L^2(\Omega )$ and ${\mathbb {L}}_{{\rm c}}\operatorname {Curl} P\in H(\operatorname {Curl};\Omega )$.

If we additionally assume that $\mathbb {L}_c$ has a block-diagonal structure, we may also achieve $\operatorname {Curl} P\in H^1(\Omega )$ by applying the weighted embedding theorem 2.5.

Corollary 4.2 In addition to the assumptions of theorem 4.1 let $\mathbb {L}_c\in C^1(\overline \Omega ;\operatorname{Lin} (\mathbb{R} ^{3\times 3},\,\mathbb{R} ^{3\times 3}))$ be of block diagonal structure, meaning that there exist $\mathbb {L}_i\in C^1(\overline \Omega ;\mathbb{R} ^{3\times 3})$, $1\leq i\leq 3$, such that for every $W\in \mathbb{R} ^{3\times 3}$ we have $(\mathbb {L}_c W)_{i\text {-th row}}= \mathbb {L}_i (W_{i\text {-th row}})$. Then $\mathbb {L}_c\operatorname {Curl} P\in H^1(\Omega )$ and $\operatorname {Curl} P\in H^1(\Omega )$.

Proof. We focus on the $i$-th row $P^i$ of $P$. Let $\varepsilon =(\mathbb {L}_i)^{-1}$. Then $\varepsilon \in C^1(\overline \Omega ;\mathbb{R} ^{3\times 3})$ and $\varepsilon (x)$ is symmetric and uniformly positive definite with respect to $x\in \overline \Omega$.

We know that $P^i\in H_0(\operatorname {curl};\Omega )$, hence lemma 2.3 implies immediately that

\[ \varepsilon\, \mathbb{L}_i \operatorname{curl} P^i=\operatorname{curl} P^i \in H_0(\operatorname{div},0;\Omega)\,. \]

The weighted embedding theorem 2.5 implies $\mathbb {L}_i \operatorname {curl} P^i\in H^1(\Omega )$, and since $\varepsilon =\mathbb {L}_i^{-1}$ is a multiplyer on $H^1(\Omega )$, we finally obtain $\operatorname {curl} P^i\in H^1(\Omega )$.

Remark 4.3 The previous result may be applied to the simple uni-constant isotropic curvature case $L^2_{\mathrm {c}}\,\|\operatorname {Curl} P\|^2$.

Remark 4.4 It is clear that the same higher regularity result can be established for the linear Cosserat model [Reference Ghiba, Rizzi, Madeo and Neff9].

5. Global regularity for a gauge-invariant incompatible elasticity model

The method presented above for obtaining regularity of solution for the static relaxed micromorphic model can be directly applied to the following gauge-invariant incompatible elasticity model [Reference Lazar and Anastassiadis17, Reference Neff, Ghiba, Lazar and Madeo24]

(5.1)\begin{equation} 0={-}\operatorname{Curl}[{\mathbb{L}}_{{\rm c}}\operatorname{Curl} e] - {\mathbb{C}_{{\rm e}}}\operatorname{sym} e-{\mathbb{C}_{{\rm c}}}\operatorname{skew} e+M, \end{equation}

where the unknown function is the non-symmetric incompatible elastic distortion $e:\Omega \rightarrow \mathbb{R} ^{3\times 3}$ while $M:\Omega \rightarrow \mathbb{R} ^{3\times 3}$ is a given body moment tensor. The constitutive tensors ${\mathbb {C}_{{\rm e}}}$, ${\mathbb {L}}_{{\rm c}}$ are positive definite fourth order tensors (fulfilling the Assumption A) while ${\mathbb {C}_{{\rm c}}}:\operatorname {\mathfrak {so}}(3)\rightarrow \operatorname {\mathfrak {so}}(3)$ is positive semi-definite. The system (5.1) is considered with homogeneous tangential boundary conditions, i.e.

(5.2)\begin{equation} {e}_i({x})\times\,n(x) =0 \text{ for } {x}\in\partial \Omega, \end{equation}

where $\times$ denotes the vector product, $n$ is the unit outward normal vector at the surface $\partial \Omega$, $e_i$ ($i=1,\,2,\,3$) are the rows of the tensor $e$. Problem (5.1) generalizes the time-harmonic Maxwell-type eigenvalue problem [Reference Alberti and Capdeboscq3, Reference Yin43] from the vectorial to the tensorial setting. On the other hand, equation (5.1) corresponds to the second equation of (1.2) upon setting ${\mathbb {C}_{{\rm micro}}}\equiv 0$, assuming ${\mathbb {C}_{{\rm c}}}\equiv 0$, identifying the elastic distortion $e$ with $e=\mathrm {D} u-P$ and observing that

(5.3)\begin{align} -\operatorname{Curl}{\mathbb{L}}_{{\rm c}}\operatorname{Curl} P=\operatorname{Curl}{\mathbb{L}}_{{\rm c}}\operatorname{Curl}({-}P)=\operatorname{Curl}{\mathbb{L}}_{{\rm c}}\operatorname{Curl}(\mathrm{D} u- P)=\operatorname{Curl}{\mathbb{L}}_{{\rm c}}\operatorname{Curl} e\,. \end{align}

Smooth solutions of (5.1) satisfy the balance of linear momentum equation

(5.4)\begin{equation} \operatorname{Div} ({\mathbb{C}_{{\rm e}}}\operatorname{sym} e+{\mathbb{C}_{{\rm c}}}\operatorname{skew} e)=\operatorname{Div} M. \end{equation}

Gauge-invariance means here that the solution $e$ is invariant under

(5.5)\begin{equation} \mathrm{D} u \rightarrow \mathrm{D} u+\mathrm{D}\tau\,,\qquad\qquad P\rightarrow P+\mathrm{D}\tau \end{equation}

which invariance is only possible since ${\mathbb {C}_{{\rm micro}}}\equiv 0$ (${\mathbb {C}_{{\rm micro}}}> 0$ breaks the gauge-invariance). Here $\tau$ is a space-dependent (or local) translation vector. The elastic energy can then be expressed as

(5.6)\begin{equation} \int_{\Omega}\big\langle {\mathbb{C}_{{\rm e}}}\operatorname{sym} e,\operatorname{sym} e\big\rangle +\big\langle{\mathbb{L}}_{{\rm c}}\operatorname{Curl} e,\operatorname{Curl} e\big\rangle-\langle M,e\rangle\,{\mathrm d} x \end{equation}

in which the first term accounts for the energy due to elastic distortion, the second term takes into account the energy due to incompatibility in the presence of dislocations and the last term is representing the forcing.

For $e,\,v\in H_0(\operatorname {Curl};\Omega )$ the following bilinear form is associated with the system (5.1)

(5.7)\begin{align} b(e,v)=\int_{\Omega}\big\langle{\mathbb{L}}_{{\rm c}}\operatorname{Curl} e,\operatorname{Curl} v\big\rangle+\big\langle{\mathbb{C}_{{\rm e}}}\operatorname{sym} e,\operatorname{sym} v\big\rangle+\big\langle{\mathbb{C}_{{\rm c}}}\operatorname{skew} e,\operatorname{skew} v\big\rangle \,{\mathrm d} x\,. \end{align}

Let us assume that $M\in H(\operatorname {Div};\Omega )$. Coercivity of the bilinear form (5.7) (the generalized incompatible Korn's inequality (3.3)) and the Lax-Milgram theorem imply the existence of exactly one weak solution $e\in H_0(\operatorname {Curl};\Omega )$ of the system (5.1). The Helmholtz decomposition yields that $e=\mathrm {D} q + Q$, where $q\in H_0^1(\Omega ;\mathbb{R} ^3)$ and $Q\in H(\operatorname {Div},\,0;\Omega )$. By proposition 2.2 it follows that $Q\in H(\operatorname {Div},\,0;\Omega )\cap H_0(\operatorname {Curl};\Omega )$ and theorem 2.4 implies that $Q\in H^1(\Omega )$. Inserting the decomposed form of the tensor $e$ into the weak form of system (5.1), we obtain

(5.8)\begin{align} & \int_\Omega \langle {\mathbb{C}_{{\rm e}}}\operatorname{sym}(\mathrm{D} q + Q), \operatorname{sym} W\rangle{\mathrm d} x+\int_\Omega \langle {\mathbb{C}_{{\rm c}}}\operatorname{skew}(\mathrm{D} q + Q), \operatorname{skew} W\rangle{\mathrm d} x\nonumber\\ & \quad+ \int_\Omega \langle{\mathbb{L}}_{{\rm c}} \operatorname{Curl} (\mathrm{D} q+Q),\operatorname{Curl} W\rangle\,{\mathrm d} x= \int_{\Omega} \langle M,W\rangle\,{\mathrm d} x \end{align}

for all $W\in H_0(\operatorname {Curl};\Omega )$. Again, choosing $W=\mathrm {D} w$ for $w\in C_0^\infty (\Omega ;\mathbb{R} ^3)$, the weak form (5.8) in combination with a density argument implies that for all $w\in H_0^1(\Omega )$ we have

(5.9)\begin{align} & \int_\Omega \langle {\mathbb{C}_{{\rm e}}}\operatorname{sym}\mathrm{D} q, \operatorname{sym} \mathrm{D} w\rangle {\mathrm d} x+\int_\Omega \langle {\mathbb{C}_{{\rm c}}}\operatorname{skew}\mathrm{D} q, \operatorname{skew} \mathrm{D} w\rangle{\mathrm d} x\nonumber\\ & \quad= \int_{\Omega} \langle M,\mathrm{D} w\rangle\,{\mathrm d} x-\int_\Omega \langle {\mathbb{C}_{{\rm e}}}\operatorname{sym} Q, \operatorname{sym} \mathrm{D} w\rangle {\mathrm d} x-\int_\Omega \langle {\mathbb{C}_{{\rm c}}}\operatorname{skew} Q, \operatorname{skew} \mathrm{D} w\rangle\,{\mathrm d} x \end{align}

Since $Q\in H^1(\Omega )$ and $M\in H(\operatorname {Div};\Omega )$, by partial integration the right hand side of (4.3) can be rewritten as $\int _\Omega \langle F_2,\, w\rangle \textrm{d}x$ with functions $F_2\in L^2(\Omega )$. Note that the auxiliary problem (??) obtained this time is a problem from standard linear elasticity. Thus, in this case we do not need to go through lemma 2.8: just from the standard theory of regularity in the linear elasticity we obtain that $q\in H^2(\Omega )$ ([Reference Valent41]). The result is that on smooth domains and with smooth coefficients the weak solution of (5.1) is more regular and satisfies

(5.10)\begin{equation} e\in H^1(\Omega), \quad {\mathbb{L}}_{{\rm c}}\operatorname{Curl} e\in H(\operatorname{Curl};\Omega) , \quad \operatorname{Curl}({\mathbb{L}}_{{\rm c}}\operatorname{Curl} e) \in H^1(\Omega), \end{equation}

where the last regularity in (5.10) follows from equation (5.1). Moreover, if ${\mathbb {L}}_{{\rm c}}$ has a special block diagonal structure, then we have

(5.11)\begin{equation} {\mathbb{L}}_{{\rm c}}\operatorname{Curl} e\in H^1(\Omega), \quad \, \operatorname{Curl} e \in H^1(\Omega). \end{equation}

Acknowledgements

The authors wish to thank Dirk Pauly (TU Dresden) for inspiring discussions on this subject dating to 2013. Patrizio Neff and Dorothee Knees acknowledge support in the framework of the Priority Programme SPP 2256 ‘Variational Methods for Predicting Complex Phenomena in Engineering Structures and Materials’ funded by the Deutsche Forschungsgemeinschaft (DFG, German research foundation): P. Neff within the project ‘A variational scale-dependent transition scheme - from Cauchy elasticity to the relaxed micromorphic continuum’ (Project-ID 440935806), D. Knees within the project ‘Rate-independent systems in solid mechanics: physical properties, mathematical analysis, efficient numerical algorithms’ (Project-ID 441222077). D.K. and P.N. enjoyed the welcoming atmosphere at the Hausdorff Research Institute for Mathematics, Bonn, funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – EXC-2047/1 – 390685813.

References

Adams, R. and Fournier, J. F., Sobolev Spaces, volume 140 of Pure and Applied Mathematics, 2nd edn (Elsevier/Academic Press, Amsterdam, 2003).Google Scholar
Alberdi, R., Robbins, J., Walsh, T. and Dingreville, R.. Exploring wave propagation in heterogeneous metastructures using the relaxed micromorphic model. J. Mech. Phys. Solids. 155 (2021), 10.CrossRefGoogle Scholar
Alberti, G. S. and Capdeboscq, Y.. Elliptic regularity theory applied to time harmonic anisotropic Maxwell's equations with less than Lipschitz complex coefficients. SIAM J. Math. Anal. 46 (2014), 9981016.CrossRefGoogle Scholar
Bauer, S., Pauly, D. and Schomburg, M.. The Maxwell compactness property in bounded weak Lipschitz domains with mixed boundary conditions. SIAM J. Math. Anal. 48 (2016), 29122943.CrossRefGoogle Scholar
Costabel, M.. A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains. Math. Methods. Appl. Sci. 12 (1990), 365368.CrossRefGoogle Scholar
Demore, F., Rizzi, G., Collet, M., Neff, P. and Madeo, A.. Unfolding engineering metamaterials design: relaxed micromorphic modeling of large-scale acoustic meta-structures. J. Mech. Phys. Solids. 168 (2022), 104995.CrossRefGoogle Scholar
Farwig, R., Kozono, H. and Sohr, H.. The Helmholtz decomposition in arbitrary unbounded domains-a theory beyond $L^2$. Proc. Equadiff - 1 1 [Part 2] (2005), 7785.Google Scholar
Ghiba, I.-D., Neff, P., Madeo, A., Placidi, L. and Rosi, G.. The relaxed linear micromorphic continuum: existence, uniqueness and continuous dependence in dynamics. Math. Mech. Solids. 20 (2015), 11711197.CrossRefGoogle Scholar
Ghiba, I.-D., Rizzi, G., Madeo, A. and Neff, P.. Cosserat micropolar elasticity: classical Eringen vs. dislocation form. J. Mech. Mater. Struct. 18 (2023), 93123.CrossRefGoogle Scholar
Gilbarg, D. and Trudinger, N. S., Elliptic Partial Differential Equations of Second Order. Class. Math. reprint of the 1998 ed. edition (Berlin: Springer, 2001).CrossRefGoogle Scholar
Girault, V. and Raviart, P.-A., Finite Element Methods for Navier-Stokes Equations, volume 5 of Springer Series in Computational Mathematics. (Springer-Verlag, Berlin, 1986). Theory and Algorithms.CrossRefGoogle Scholar
Gmeineder, F., Lewintan, P. and Neff, P.. Optimal incompatible Korn-Maxwell-Sobolev inequalities in all dimensions. Calc. Var. Partial. Differ. Equ. 62 (2023), 182.CrossRefGoogle Scholar
Gmeineder, F., Lewintan, P. and Neff, P.. Korn-Maxwell-Sobolev inequalities for general incompatibilities. Math. Model. Methods Appl. Sci. 34 (2024), 523570.CrossRefGoogle Scholar
Grisvard, P., Elliptic Problems in Nonsmooth Domains, volume 24 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, MA, 1985.Google Scholar
Knees, D., Owczarek, S. and Neff, P.. A local regularity result for the relaxed micromorphic model based on inner variations. J. Math. Anal. Appl. 519 (2023), 126806.CrossRefGoogle Scholar
Kuhn, P. and Pauly, D.. Regularity results for generalized electro-magnetic problems. Anal. (Munich) 30 (2010), 225252.Google Scholar
Lazar, M. and Anastassiadis, C.. The gauge theory of dislocations: static solutions of screw and edge dislocations. Philos. Magaz. 89 (2009), 199231.CrossRefGoogle Scholar
Lewintan, P., Müller, S. and Neff, P.. Korn inequalities for incompatible tensor fields in three space dimensions with conformally invariant dislocation energy. Calc. Var. Partial. Differ. Equ. 60 (2021), 150.CrossRefGoogle Scholar
Lewintan, P. and Neff, P.. $L^p$-trace-free generalized Korn inequalities for incompatible tensor fields in three space dimensions. Proc. R. Soc. Edinburgh: Sect. Math. 152 (2021), 132.Google Scholar
Lewintan, P. and Neff, P.. Nečas-Lions lemma revisited: An $L^p$-version of the generalized Korn inequality for incompatible tensor fields. Math. Methods. Appl. Sci. 44 (2021), 1139211403.CrossRefGoogle Scholar
Madeo, A., Neff, P., Ghiba, I.-D. and Rosi, G.. Reflection and transmission of elastic waves in non-local band-gap metamaterials: A comprehensive study via the relaxed micromorphic model. J. Mech. Phys. Solids. 95 (2016), 441479.CrossRefGoogle Scholar
Neff, P.. On Korn's first inequality with non-constant coefficients. Proc. R. Soc. Edinburgh Sec. A: Math. 132 (2002), 221243.CrossRefGoogle Scholar
Neff, P., Eidel, B., d'Agostino, M. V. and Madeo, A.. Identification of scale-independent material parameters in the relaxed micromorphic model through model-adapted first order homogenization. J. Elast. 139 (2020), 269298.CrossRefGoogle Scholar
Neff, P., Ghiba, I. D., Lazar, M. and Madeo, A.. The relaxed linear micromorphic continuum: well-posedness of the static problem and relations to the gauge theory of dislocations. Q. J. Mech. Appl. Math. 68 (2015), 5384.CrossRefGoogle Scholar
Neff, P., Ghiba, I. D., Madeo, A., Placidi, L. and Rosi, G.. A unifying perspective: the relaxed linear micromorphic continuum. Continuum Mech. Thermodyn. 26 (2014), 639681.CrossRefGoogle Scholar
Neff, P. and Knees, D.. Regularity up to the boundary for nonlinear elliptic systems arising in time-incremental infinitesimal elasto-plasticity. SIAM J. Mathe. Anal. 40 (2008), 2143.CrossRefGoogle Scholar
Neff, P., Pauly, D. and Witsch, K.-J.. Poincaré meets Korn via Maxwell: extending Korn's first inequality to incompatible tensor fields. J. Differ. Equ. 258 (2015), 12671302.CrossRefGoogle Scholar
Owczarek, S., Ghiba, I.-D. and Neff, P.. Existence results for non-homogeneous boundary conditions in the relaxed micromorphic model. Math. Methods. Appl. Sci. 44 (2021), 20402049.Google Scholar
Owczarek, S., Ghiba, I.-D. and Neff, P.. A note on local higher regularity in the dynamic linear relaxed micromorphic model. Math. Methods. Appl. Sci. 44 (2021), 1385513865.CrossRefGoogle Scholar
Pauly, D.. On the Maxwell and Friedrichs/Poincaré constants in ND. Math. Z. 293 (2019), 957987.CrossRefGoogle Scholar
Pauly, D. and Schomburg, M.. Hilbert complexes with mixed boundary conditions - Part 1: de Rham complex. Math. Methods. Appl. Sci. 45 (2022), 24652507.CrossRefGoogle Scholar
Pauly, D. and Schomburg, M.. Hilbert complexes with mixed boundary conditions - Part 2: Elasticity complex. Math. Methods. Appl. Sci. 45 (2022), 89719005.CrossRefGoogle Scholar
Rizzi, G., d'Agostino, M. V., Neff, P. and Madeo, A.. Boundary and interface conditions in the relaxed micromorphic model: Exploring finite-size metastructures for elastic wave control. Math. Mech. Solids. 27 (2022), 10531068.CrossRefGoogle Scholar
Rizzi, G., Hütter, G., Khan, H., Ghiba, I.-D., Madeo, A. and Neff, P.. Analytical solution of the cylindrical torsion problem for the relaxed micromorphic continuum and other generalized continua (including full derivations). Math. Mech. Solids. 27 (2022), 507553.CrossRefGoogle Scholar
Sarhil, M., Scheunemann, L., J. Schröder, L.P. and Neff, P., A computational approach to identify the material parameters of the relaxed micromorphic model. arXiv:2401.15648 [math.NA], to appear in Computer Methods Applied Mechanics Engineering (2024).CrossRefGoogle Scholar
Sarhil, M., Scheunemann, L., Schröder, J. and Neff, P.. Size-effects of metamaterial beams subjected to pure bending: on boundary conditions and parameter identification in the relaxed micromorphic model. Comput. Mech. 72 (2023), 10911113.CrossRefGoogle Scholar
Schröder, J., Sarhil, M., Scheunemann, L. and Neff, P.. Lagrange and $H(\operatorname {curl},\,\mathcal {B})$ based Finite Element formulations for the relaxed micromorphic model. Comput. Mech. 70 (2022), 13091333.CrossRefGoogle Scholar
Sky, A., Neunteufel, M., Lewintan, P., Zilian, A. and Neff, P.. Novel $H(\mathrm {sym}\, \mathrm {Curl})$-conforming finite elements for the relaxed micromorphic sequence. Comput. Methods. Appl. Mech. Eng. 418 (2023), 116494.CrossRefGoogle Scholar
Sky, A., Neunteufel, M., Muench, I., Schöberl, J. and Neff, P.. Primal and mixed finite element formulations for the relaxed micromorphic model. Comput. Methods. Appl. Mech. Eng. 399 (2022), 115298.CrossRefGoogle Scholar
Sky, A., Neunteufel, M., Münch, I., Schöberl, J. and Neff, P.. A hybrid $H^1\times H(\operatorname {curl})$ finite element formulation for a relaxed micromorphic continuum model of antiplane shear. Comput. Mech. 68 (2021), 124.CrossRefGoogle Scholar
Valent, T., Boundary Value Problems of Finite Elasticity, Volume 31 of Springer Tracts in Natural Philosophy (Springer-Verlag, New York, 1988).CrossRefGoogle Scholar
Weber, C.. Regularity Theorems for Maxwell's Equations. Math. Methods. Appl. Sci. 3 (1981), 523536.CrossRefGoogle Scholar
Yin, H.-M.. Regularity of weak solution to Maxwell's equations and applications to microwave heating. J. Differ. Equ. 200 (2004), 137161.CrossRefGoogle Scholar