Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T04:05:39.729Z Has data issue: false hasContentIssue false

Thin Film Nanoelectronic Probe for Protein Detection – CORRIGENDUM

Published online by Cambridge University Press:  29 July 2013

Abstract

Type
Corrigendum
Copyright
Copyright © Materials Research Society 2013 

doi: 10.1557/opl.2013.660, Published by Materials Research Society, 5 June 2013.

The article's reference list has been updated with the proper citation format.

References

Reference

Esfandyarpour, Rahim, Javanmard, Mehdi, Koochak, Zahra, Esfandyarpour, Hesaam, Harris, James S. and Davis, Ronald W. (2013). Thin Film Nanoelectronic Probe for Protein Detection. MRS Proceedings , 1572, mrss13-1572-ss01-10 doi:10.1557/opl.2013.660.CrossRefGoogle Scholar

REFERENCES

Dunphy, W. G.; Kumagai, A., The cdc25 protein contains an intrinsic phosphatase activity. Cell 1991, 67(1), 189196.CrossRefGoogle ScholarPubMed
Stillman, B., Smart machines at the DNA replication fork. Cell 1994, 78(5), 725728.CrossRefGoogle ScholarPubMed
Stevens, M. M.; George, J. H., Exploring and engineering the cell surface interface. Science 2005, 310(5751), 11351138.CrossRefGoogle ScholarPubMed
Astumian, R. D., Adiabatic pumping mechanism for ion motive ATPases. Physical review letters 2003, 91(11), 118102.CrossRefGoogle ScholarPubMed
Esfandyarpour, R.; Esfandyarpour, H.; Javanmard, M.; Harris, J. S.; Davis, R. W., Microneedle Biosensor: A Method for Direct Label-free Real Time Protein Detection. Sensors and Actuators B: Chemical 2012.Google Scholar
Esfandyarpour, R.; Esfandyarpour, H.; Javanmard, M.; Harris, J. S.; Davis, R. W. In Electrical Detection of Protein Biomarkers Using Nanoneedle Biosensors, MRS Proceedings, Cambridge Univ Press: 2012.CrossRefGoogle Scholar
Koritsas, V. M.; Atkinson, H. J., An assay for detecting nanogram levels of proteolytic enzymes. Analytical biochemistry 1995, 227(1), 2226.CrossRefGoogle ScholarPubMed
van Oss, , , C. J.; Giese, R. F.; Bronson, P. M.; Docoslis, A.; Edwards, P.; Ruyechan, W. T., Macroscopic-scale surface properties of streptavidin and their influence on aspecific interactions between streptavidin and dissolved biopolymers. Colloids and Surfaces B: Biointerfaces 2003, 30(1), 2536.CrossRefGoogle Scholar
Butler, J.; Ni, L.; Brown, W.; Joshi, K.; Chang, J.; Rosenberg, B.; Voss, E Jr., The immunochemistry of sandwich ELISAs—VI. Greater than 90% of monoclonal and 75% of polyclonal anti-fluorescyl capture antibodies (CAbs) are denatured by passive adsorption. Molecular immunology 1993, 30(13), 11651175.CrossRefGoogle ScholarPubMed
Nordlund, H., Avidin engineering: modification of function, oligomerization, stability and structure topology. Jyväskylän yliopisto : 2003.Google Scholar
Salama, A. D.; Dougan, T.; Levy, J. B.; Cook, H. T.; Morgan, S. H.; Naudeer, S.; Maidment, G.; George, A. J.; Evans, D.; Lightstone, L., Goodpasture's disease in the absence of circulating anti-glomerular basement membrane antibodies as detected by standard techniques. American journal of kidney diseases 2002, 39(6), 11621167.CrossRefGoogle ScholarPubMed
Pitera, J. W.; Falta, M.; van Gunsteren, W. F., Dielectric properties of proteins from simulation: the effects of solvent, ligands, pH, and temperature. Biophysical journal 2001, 80(6), 25462555.CrossRefGoogle ScholarPubMed
Gray, H. B.; Winkler, J. R., Electron tunneling through proteins. Quarterly reviews of biophysics 2003, 36(3), 341372.CrossRefGoogle ScholarPubMed
Larsson, S., Electron transfer in proteins. J. Chem. Soc., Faraday Trans. 2 1983, 79(9), 13751388.CrossRefGoogle Scholar